How I Built a CMS, Using TypeScript, Bun, Drizzle, & MDX (complete version)
Then swapped it out for something better, contentlayer2
This wasn't the post I planned to write. Initially, I thought this post was going to be dedicated exclusively to my bespoke content management system. Where, I thought I’d wax poetic for a while about how sometimes the best solutions, are tailor made. However, I’ve since come back to my senses to realize that the best solution is the one with the smallest number of compromises, hand crafted be damned.
So, that’s where contentlayer2
1 (maintained fork of contentlayer
) came in to the equation. it's a library I stumbled upon that did exactly what I’d come up with, but in a better, more robust, and much more practical manner. In short, it's beautiful.
In honesty, I was awestruck by contentlayer’s pitch video2. Especially so, because I’d just gone through the whole process of pouring blood, sweat, and tears into my own content management system for this site. It really wasn't long after that, that I swapped my whole custom solution out for it.
But, swallowed pride aside, creating my own content backend was quite a learning experience for me, so I wanted to talk about it. As such, I present to you my technical summary on my custom solution.
Introduction
I started my life in web working with traditional CMSes like WordPress3 and then briefly, Ghost4. Later, I took the JAMstack5 hype train as far as it could go, fetching data from headless CMSes6 like Strapi7 and Contentful8, and integrating it into Gatsby9 frontends. Then, sometime before building this site, I caught myself up on the latest headless CMSes people have been working with. I experimented with Payload CMS10 and Directus11, before diving into off-the-shelf backends like Supabase12, and PocketBase13 (my personal favorite).
However, something about all the options I weighed kept disappointing me in one way or another. So, after a day of feeling the frustration of yet another imperfect solution, I found myself one late evening going "Yeah, well, I'll build my own CMS, with Blackjack, and Hookers! In fact, forget the CMS"14. So, that's what I did.
My idea was pretty straightforward. Instead of a traditional user-friendly CMS, I based it on Astro's15 model of content management (Content Collections16) —leveraging markdown
17, yaml
18, and jsx
19 in .mdx
20 files to store and organize content—with my own twist, a database I can cache all that data i want into. The latter meant I could fetch and generate content live in production, in taking advantage of Next.js’ SSR features21.
As such, the following was the strategy I'd come up with as I poured over documentation22 and the various Next.js markdown blog examples23, 24 Vercel25 has available:
- Scan the posts.
- Process the data.
- Store data into a SQLite database
- Fetch data from the database.
- Render the data.
Sounds easy enough, right? Well, sorta. The largest hurdle to overcome was in the processing phase, when I decided simply fetching the featured Image src
26 wasn’t good enough. That's because I wanted srcset
27 blurs and that’s when things got complicated. A smaller hurdle, was realizing I wasn’t fetching the image transformations properly. Investigating why is how I wound up learning about Next’s loaderFile
28 configuration option, but I digress as that’s somewhat specific to the fact I use a CDN29 (i.e., AWS CloudFront30) to distribute this site (& it’s assets).
Now, while my custom solution worked, it was, admittedly, flawed. First, because I really only implemented the first three letters of the CRUD31 acronym for this. Second, by the time I came up with a way to auto delete content I’d removed, well, that's when I stumbled upon a rad little library called contentlayer2
, as I'd mentioned before. That was the turning point which pretty much signaled the end of any further development on my custom solution.
Before that happened, I should mention why I wound up using Turso32, a SQLite33 (libSQL34) DBaaS35 for this project, since SQLite's whole purpose is that it's embeddable.
Now, I actually did try that; embedding the SQLite database right into my Next.js application, and leveraging Bun’s native SQLite driver36 in the process. However, when I was testing development builds of this site on Vercel, I learned there were some limitations37, 38, 39.
The first issue was that, ephemeral storage in static functions makes SQLite impractical37. Second, while a read-only implementation is possible38, you are limited by the serverless function's storage capacity39. Finally, I couldn't get read-only SQLite to work on dynamically rendered routes. In my testing, reading from the embedded SQLite database was only possible on routes generated using generateStaticParams
40.
So, in thinking about the future, and not wanting to limit my project pre-emptively, a DBaaS seemed my only viable option. However, by the time I'd actually realized that, I'd already written my Drizzle ORM41 statements for SQLite, and I wasn't in the mood for converting them into a different SQL format. So, of Drizzle's SQLite compatible drivers42, I wound up using Turso.
Choosing Turso over Cloudflare's D1
I suppose I could’ve used Cloudflare’s D143, instead of Turso, but the moose mascot was so gosh darn cute! Couple that with the fact they have a wonderfully generous free tier44, how could I say no?!
Setup
Of the ORMs, I had narrowed it down to two options, Prisma45 or Drizzle ORM41. I settled on Drizzle because I liked the focus on TypeScript, and I liked that you could write raw(ish) SQL as an escape hatch using its magic SQL46 operator. I also really liked the idea that the knowledge gained in working with it, would be transferable, since one of their taglines is if you know SQL, you know Drizzle. I'm also just a sucker for companies that know how to execute self-deprecating advertising strategies47, 48, so my heart was settled on using it.
Drizzle + Turso
Anyways, since I did end up using Drizzle, there was some configuration required before I could flesh out the rest of my solution. Aside from registering for Turso and generating my API keys, the first thing I had to do was setup a drizzle.config.ts
49 file to use with Turso.
// drizzle.config.tsimport type { Config } from 'drizzle-kit';import { Resource } from 'sst';dotenv.config();export default { schema: './src/lib/db/schema/*', out: './drizzle/migrations', dialect: 'sqlite', driver: 'turso', dbCredentials: { url: Resource.TursoUrl.value, authToken: Resource.TursoAuth.value, },} satisfies Config;
I loosely followed Turso's guide on setting it up with Drizzle50, then came up with the resultant code above. In sum:
- I'm importing multiple schemas using the wildcard glob51 pattern (
*
). - SQL migrations get written into the root
drizzle/
directory. - I'm using the SQLite flavor of Drizzle, in tandem with the Turso driver.
- I load in my credentials for Turso using the
{ dbCredentials }
object. - There's a type check which ensures that config object is in agreement with the
Config
type imported fromdrizzle-kit
.
Something I should note, is that instead of injecting the Turso credentials from a .env
file using something like process.env.TURSO_AUTH
52, I took advantage of SST's53 secret54 component instead. You'll notice I tapped into the { Resource }
55 object from sst
using some simple dot notation56. This really just avoids the hassle of passing around a .env.local
57 file between work machines / dev environments.
Schemas
Once I had that, then I just had to define some schemas/tables58 for my posts. This resulted in creating the following tables:
- authors
- tags
- featured_images
- posts
The idea was that the authors, featured_images, and tags tables would respectively create one-many59, and many-many59 relations to the posts table. Something like this:
In keeping with SQLites Datatypes60 and what's available in Drizzle61 Some commonalities between these tables (as we'll see), is that I'm using a string
for each rows id
and primary key column, and a integer
set to timestamp
for the date column. That's because the id
is a UUIDv4
62 generated using Bun's crypto.randomUUID()
63, and the date is a utc
string. The rawStr
column, is simply the raw utf8
string generated from reading the .mdx
file into memory.
Of note, in the below schemas, I'm manually exporting their types. Unfortunately, at the time, I simply wasn't aware of drizzle's $inferInsert
64, $inferSelect
64 functions to automatically generate types. So, that's why I'm doing it artisanally, in case you were wondering.
// authors.tsimport { sqliteTable, text, integer } from 'drizzle-orm/sqlite-core';export interface Authors { id: string; slug: string; date: Date; name: string; mastodon?: string; mastodonURL?: string; localKey: string; rawStr: string;}export const authors = sqliteTable('authors', { id: text('id').primaryKey(), slug: text('slug').unique().notNull(), date: integer('date', { mode: 'timestamp' }), name: text('name'), mastodon: text('mastodon'), mastodonURL: text('mastodon_url'), localKey: text('local_key'), rawStr: text('raw_str'),});
// tags.tsimport { sqliteTable, text, integer } from 'drizzle-orm/sqlite-core';export interface Tags { id: string; slug: string; date: Date; title: string; localKey: string; rawStr?: string;}export const tags = sqliteTable('tags', { id: text('id').primaryKey(), slug: text('slug').unique(), date: integer('date', { mode: 'timestamp' }), title: text('title').unique(), localKey: text('local_key'), rawStr: text('raw_str'),});
//featured-images.tsimport { integer, sqliteTable, text } from 'drizzle-orm/sqlite-core';export interface FeaturedImages { id: string; slug: string; date: Date; title?: string; fileLocation: string; caption?: string; credit?: string; creditUrlText?: string; creditUrl?: string; altText: string; localKey: string; blur: string; height: number; width: number; rawStr: string;}export const featuredImages = sqliteTable('featured_images', { id: text('id').primaryKey(), slug: text('slug').unique().notNull(), date: integer('date', { mode: 'timestamp' }), title: text('title'), fileLocation: text('file_location'), caption: text('caption'), credit: text('credit'), creditUrlText: text('credit_url_text'), creditUrl: text('credit_url'), localKey: text('local_key'), altText: text('alt_text'), blur: text('blur'), height: integer('height'), width: integer('width'), rawStr: text('raw_str'),});
Since the posts.ts
schema/table is the most complicated, being the one that integrates all the other tables, it's important to talk about what's happening. You'll notice in the below, I'm importing the previously defined schemas authors
, tags
, and featured_images
, and consuming them both as foreign keys and in relational tables.
// posts.tsimport { sqliteTable, text, primaryKey, integer } from 'drizzle-orm/sqlite-core';import { relations } from 'drizzle-orm';import { authors } from './authors';import { tags } from './tags';import { featuredImages } from './featured-images';export const authorsRelations = relations(authors, ({ many }) => ({ posts: many(posts),}));export const featuredImagesRelations = relations(featuredImages, ({ many }) => ({ posts: many(posts),}));export interface Posts { id: string; slug: string; date: Date; tags: string[]; author: string; headline: string; subheadline?: string; featuredImage: string; altCaption?: string; localKey: string; rawStr: string;}export const posts = sqliteTable('posts', { id: text('id').primaryKey(), authorId: text('author_id') .references(() => authors.id, { onUpdate: 'cascade', onDelete: 'cascade' }) .notNull(), date: integer('date', { mode: 'timestamp' }), slug: text('slug').unique().notNull(), headline: text('headline').unique().notNull(), subheadline: text('subheadline'), featuredImageId: text('featured_image_id').references(() => featuredImages.id, { onUpdate: 'cascade', onDelete: 'cascade', }), altCaption: text('alt_caption'), localKey: text('local_key'), rawStr: text('raw_str'),});export const postsRelations = relations(posts, ({ one, many }) => ({ author: one(authors, { fields: [posts.authorId], references: [authors.id], }), featuredImage: one(featuredImages, { fields: [posts.featuredImageId], references: [featuredImages.id], }), postToTags: many(postsToTags),}));export const postsToTags = sqliteTable( 'posts_to_tags', { postId: text('post_id') .notNull() .references(() => posts.id, { onUpdate: 'cascade', onDelete: 'cascade' }), tagId: text('tag_id') .notNull() .references(() => tags.id, { onUpdate: 'cascade', onDelete: 'cascade' }), }, (t) => { return { pk: primaryKey({ columns: [t.postId, t.tagId] }), }; },);export const postsToTagsRelations = relations(postsToTags, ({ one }) => ({ tag: one(tags, { fields: [postsToTags.tagId], references: [tags.id], }), post: one(posts, { fields: [postsToTags.postId], references: [posts.id], }),}));
In using them as foreign keys, I'm really just taking advantage of the cascade operations.
As far as relations go, I'm using drizzles relations65 feature, and creating relational tables for both one-to-many (authors
, featured_images
) and many-to-many (tags
) relations. In truth, this was somewhat extra, since I had foreign keys available to me on turso
, but I was curious to know what drizzle
was capable of, and this is one such addition that drizzle
brings to the table (no pun intended >.<), beyond (most) vanilla SQL functions.
Database Config
With all the schemas fleshed out the last thing to setup, was a connection to the remote DB on Turso66, where I then imported the schemas directly into the client connection.
// turso-db.tsimport { drizzle } from 'drizzle-orm/libsql';import { Resource } from 'sst';import { createClient } from '@libsql/client';import * as authors from './schema/authors';import * as tags from './schema/tags';import * as featuredImages from './schema/featured-images';import * as posts from './schema/posts';dotenv.config();const client = createClient({ url: Resource.TursoUrl.value, authToken: Resource.TursoAuth.value,});export const maindb = drizzle(client, { schema: { ...authors, ...tags, ...featuredImages, ...posts } });
With that squared away, the final step was to push our schemas as tables to our database on turso
, with a single command: drizzle-kit push
67. Though, since I was importing credentials via SST, that command was more like: sst shell bun run drizzle-kit push
68, but I digress.
Overview of my CMS
With the the database configured, the rest of the CMS could then be fleshed out. This process was in theory quite simple, following the outline from earlier. All I had to do was read content into memory, process them, and send it into the database via insert
statements.
Scanning
In practice, this took the form of an extensive script I wrote that took advantage of Bun’s speedy File I/O APIs69, to scan a folder that held all the blog content, which then read any Markdown and MDX files into memory as UTF-8 strings, sans any ignored ones.
From there I used gray-matter
70 to parse the stringified front matter, to then create an object to store both the front matter data and the raw string itself.
Processing
Then I checked that data for a UUID before generating a fresh UUIDv4 using Bun.crypto
which gets injected into the original file’s front matter, where it can then be read back into memory to update the data object.
I also performed a similar step for the post slug as well, where I checked the front matter for the existence of a slug
before generating one from the file name. I also checked if the slug and file name match, and if not, the file name overrides the slug. This is injected into the original file as well, and like the above, read back into memory to update the working data object.
Then I had a whole Image processing step, which, admittedly, is a little more complicated than the other two steps (as we’ll see). In short, a function scans the front matter data for an imageSrc
, then it copies the (relatively defined) image from the content/assets
folder, into Next’s /public
folder14. Then it runs the image through plaiceholder
71 to generate a blurry placeholder image (in base64
72 format) and to also fetch the image dimensions (height, width). Finally, it appends all that data to the object I’d generated earlier.
Storing Data
Then, with another script, I just pushed all the data to the SQLite database on Turso using drizzle
statements to insert/update the database.
Fetching Data
Once all the data was loaded, I simply fetched it using drizzle
’s query builder (mostly, some calls were proper select
statements), and I took advantage of using the React cache
73 hook built into Next.js to memoize those DB calls.
Prepping for ISR
There wasn’t a real point to doing so, seeing as I never implemented ISR, so the post page data never really went stale. Still, I figured in the event I did implement it, it’d come in handy. Well, at least I know how it works now.
Rendering Data
Once I had the data, the only thing left to do was to use mdx-bundler
74 to process the raw MDX string, and I just loaded everything else into my front end.
Scanning the Posts
Alright, the very first thing to do, was to ingest the files that actually had the content, and bring everything into memory. The below script puts into action exactly that. It’s a little complicated, but most of the complexity stems from the added processing steps. We'll go through this, chunk by chunk, over the following sections, this is just to show you the final product, upfront.
The Big Script: fetch-mdx.ts
One thing to note, is that this is the raw script I was previously using, complete with eslint
ignore directives, suggestions, and the comments I left for myself, to help explain to myself what’s going on.
Now, I did think about cleaning the script up, but I felt it was better to show you exactly what I was using right up until the switch to contentlayer2
. Why? Perhaps for posterity, or perhaps I just find the code I wrote a while ago interesting due to its now foreign nature to myself.
// fetch-mdx.ts#! /usr/bin/env bun/* eslint-disable no-undef -- bun runtime will provide bun functions *//* eslint-disable no-console -- doesn't run in the browser, so this is fine */import path from 'node:path';import { readdir, access } from 'node:fs/promises';import matter from 'gray-matter';import { getPlaiceholder } from 'plaiceholder';const isNonEmptyArrayOfStrings = (value: unknown): value is string[] => { return Array.isArray(value) && value.length > 0 && value.every((item) => typeof item === 'string');};interface ConfigProps { // must be relative path from root project directory => './content' contentFolder: string; // array of relative paths INSIDE the content folder ['./assets'] foldersToExclude?: string[]; // array of literal file name/ext => ['README.md'] filesToExclude?: string[]; // debug debug?: boolean; suppressErr?: boolean;}export const defaultConfig: ConfigProps = { contentFolder: './content', foldersToExclude: ['./assets'], filesToExclude: ['LICENSE', 'README.md'],};/*
* @example batchFetchMDXPaths({config})
* () => ['./content/blog/post0.mdx', ..., './content/blog/postN.md']
*/export const batchFetchMDXPaths = async ({ contentFolder, foldersToExclude, filesToExclude, debug, suppressErr,}: ConfigProps): Promise<string[] | undefined> => { try { const dir = await readdir(contentFolder, { recursive: true }); const excludedFolders = foldersToExclude?.map((folder) => { const cleanedFolderPath = folder.replace('./', ''); return cleanedFolderPath; }); //const absPath = path.resolve(path.join(process.cwd(), contentFolder)) const fileArr = dir.map((item): string | undefined => { debug && console.log('logging raw path:', item); if (excludedFolders?.some((folder) => item.startsWith(folder))) { debug && console.log('skipping ', item); return; } if (filesToExclude?.some((file) => item.endsWith(file))) { debug && console.log('ommitting ', item); return; } if (item.endsWith('.mdx') || item.endsWith('md')) { return `${contentFolder}/${item}`; } return undefined; }); const filter1 = fileArr.filter((el) => el); // validate found paths const cwd = process.cwd(); const validatedArr = await Promise.all( filter1.map(async (pathStr) => { try { await access(path.resolve(path.join(cwd, pathStr!))); return pathStr; } catch (err) { console.error(err); } }), ); const finalArr = validatedArr.filter((el) => el); debug && console.log(finalArr); if (isNonEmptyArrayOfStrings(finalArr)) return finalArr; } catch (err) { if (err instanceof Error && 'code' in err && err.code === 'ENOENT') { !suppressErr && console.error( "Ooops! Couldn't open that directory! Are you sure that folder is relative to root your project directory, i.e. './src/content/posts'? ", err, ); return; } !suppressErr && console.error(err); }};interface ImageUtilProps { fmatter: Record<string, unknown>; mdxPath: string; publicPath?: string; imageKey: string; debug?: boolean;}const newimageEmbedPath = async ({ fmatter, mdxPath, publicPath, imageKey, debug,}: ImageUtilProps): Promise<string | undefined> => { if (imageKey && typeof imageKey === 'string' && imageKey in fmatter) { debug && console.log('found hero image with key', imageKey); //const imageType = 'type' in fmatter && (fmatter.type as string); const currentImagePath = fmatter[imageKey]; if (typeof currentImagePath !== 'string') return; //debug && console.log(currentImagePath) const splitStr = mdxPath.split('/'); // need to get parent path before mutating array with pop. const parentPath = splitStr.slice(0, splitStr.length - 1).join('/'); //debug && console.log(parentPath) // now we can get the mdx file name to use as the folder later. const mdxFile = splitStr.pop(); if (!mdxFile) return; //const mdxFileSlug = mdxFile.split('.')[0]; //debug && console.log(mdxFileSlug) const imgToCopyFilePath = path.resolve(parentPath, currentImagePath); //debug && console.log(imgToCopyFilePath) const publicCopyPath = `/public/${publicPath}/${currentImagePath.split('/').pop()}`; //debug && console.log(publicCopyPath) const embedPublicCopyPath = `/${publicPath}/${currentImagePath.split('/').pop()}`; //debug && console.log(embedPublicCopyPath) const pathToCheck = path.join(process.cwd(), publicCopyPath); //debug && console.log(pathToCheck) const constPublicImgFile = Bun.file(pathToCheck); const imgFile = Bun.file(imgToCopyFilePath); /*
* If the file isn't in the public folder, then copy it.
* If an image already exists in the public folder,
* but the declared frontmatter image is
* different (diff in size), then replace it.
*/ const checkImg = await constPublicImgFile.exists(); if (!checkImg) { debug && console.log('image not in public folder, copying ...'); await Bun.write(`${process.cwd()}${publicCopyPath}`, imgFile); } else if (constPublicImgFile.size !== imgFile.size) { debug && console.log('found image is different from public folder, copying ...'); await Bun.write(`${process.cwd()}${publicCopyPath}`, imgFile); } else { debug && console.log('image is the same, not copying'); } return embedPublicCopyPath; }};const imgMetaPlusBlurryPlaiceHolders = async ({ fmatter, mdxPath, imageKey, debug }: ImageUtilProps) => { if (imageKey && imageKey in fmatter) { debug && console.log(`using ${fmatter[imageKey] as string} to generate img data + blurs`); const currentImagePath = fmatter[imageKey]; //console.log(currentImagePath) const splitStr = mdxPath.split('/'); const parentPath = splitStr.slice(0, splitStr.length - 1).join('/'); const imgToCopyFilePath = path.resolve(parentPath, currentImagePath as string); const imgFile = Bun.file(imgToCopyFilePath); const arrayBuf = await imgFile.arrayBuffer(); const buf = Buffer.from(arrayBuf); const { base64, metadata: { height, width }, } = await getPlaiceholder(buf); return { base64, height, width }; }};const comboImageProcessing = async ({ fmatter, mdxPath, imageKey, publicPath, debug }: ImageUtilProps) => { if (imageKey && imageKey in fmatter) { // need to do this first (the other function seems to mutate something) const imgBlurPlusMetaRes = await imgMetaPlusBlurryPlaiceHolders({ fmatter, mdxPath, imageKey, debug }); const imgBlurData = imgBlurPlusMetaRes?.base64; const imgHeight = imgBlurPlusMetaRes?.height; const imgWidth = imgBlurPlusMetaRes?.width; const newImgPath = await newimageEmbedPath({ fmatter, mdxPath, imageKey, publicPath, debug }); fmatter[imageKey] = newImgPath; return { ...fmatter, blur: imgBlurData, height: imgHeight, width: imgWidth }; }};interface InjectionPointProps { fileArr: string[]; strOfInterest: string; precisionPoint: number; debug?: boolean;}const getInjectionPoint = ({ fileArr, strOfInterest, precisionPoint, debug }: InjectionPointProps) => { const getPoint = fileArr.map((strLine, index): number | undefined => { // we're going to look for the first "---" of the front matter // then inject. We can test that we're not adding at the end by // checking if the key following injection is valid const keyGuess = fileArr[index + precisionPoint]?.split(':')[0]; //console.log(keyGuess) //console.log(strLine.split(':')[0]) const point = index + precisionPoint; if (strLine === strOfInterest && keyGuess) { debug && console.log('inject at ', index + precisionPoint, 'before ', keyGuess); return point; } else if (strLine.split(':')[0] === strOfInterest) { debug && console.log('found', strOfInterest, 'at', index, 'Injecting at', point, 'before', keyGuess); return point; } return undefined; }); const injectionPoint = getPoint.filter((el) => el)[0]; return injectionPoint;};interface InjectionProps { rawFile: string; absFilePath: string; debug?: boolean;}const injectUUID = async ({ rawFile, absFilePath, debug }: InjectionProps) => { const uuid = crypto.randomUUID(); const fileArr = rawFile.split('\n'); // we need to search the file string to find out where // we can safely inject the uuid. const injectionPoint = getInjectionPoint({ fileArr, strOfInterest: '---', precisionPoint: 1, debug }); if (typeof injectionPoint !== 'number') return; fileArr.splice(injectionPoint, 0, `id: ${uuid}`); const finalString = fileArr.join('\n'); const fileWritePath = absFilePath; debug && console.log(`saving updated markdown file to `, fileWritePath); await Bun.write(fileWritePath, finalString); const newMatter = matter(finalString).data; // we'll need to update the image path in memory, if it exists return newMatter;};const injectSlug = async ({ rawFile, absFilePath, debug }: InjectionProps) => { const fileArr = rawFile.split('\n'); const fileWritePath = absFilePath; console.log(fileWritePath); const fileName = fileWritePath.split('/').pop(); console.log(fileName); if (!fileName) return; const slug = fileName.split('.')[0]; // assuming we have the id, we'll inject it right after const injectionPoint = getInjectionPoint({ fileArr, strOfInterest: 'id', precisionPoint: 1, debug }); if (typeof injectionPoint !== 'number') return; fileArr.splice(injectionPoint, 0, `slug: ${slug}`); const finalString = fileArr.join('\n'); debug && console.log(`saving updated markdown file to `, fileWritePath); await Bun.write(fileWritePath, finalString); const newMatter = matter(finalString).data; // we'll need to update the image path in memory, if it exists return newMatter;};const comboInject = async ({ rawFile, absFilePath, debug }: InjectionProps) => { const uuid = crypto.randomUUID(); const fileArr = rawFile.split('\n'); const fileWritePath = absFilePath; //console.log(fileWritePath); const fileName = fileWritePath.split('/').pop(); //console.log(fileName); if (!fileName) return; const slug = fileName.split('.')[0]; // we need to search the file string to find out where // we can safely inject the uuid. const injectionPointId = getInjectionPoint({ fileArr, strOfInterest: '---', precisionPoint: 1, debug }); if (typeof injectionPointId !== 'number') return; fileArr.splice(injectionPointId, 0, `id: ${uuid}`); // i think we can just feed the current filarArr, can't we? // assuming we have the id, we'll inject it right after const injectionPointSlug = getInjectionPoint({ fileArr, strOfInterest: 'id', precisionPoint: 1, debug }); if (typeof injectionPointSlug !== 'number') return; fileArr.splice(injectionPointSlug, 0, `slug: ${slug}`); debug && console.log(`saving updated markdown file to `, fileWritePath); const finalString = fileArr.join('\n'); await Bun.write(fileWritePath, finalString); const newMatter = matter(finalString).data; return newMatter;};const updateSlug = async ({ rawFile, absFilePath, debug }: InjectionProps) => { const fileArr = rawFile.split('\n'); const fileWritePath = absFilePath; //console.log(fileWritePath); const fileName = fileWritePath.split('/').pop(); //console.log(fileName); if (!fileName) return; const slug = fileName.split('.')[0]; // assuming we have the id, we'll inject it right after const injectionPoint = getInjectionPoint({ fileArr, strOfInterest: 'slug', precisionPoint: 0, debug }); if (typeof injectionPoint !== 'number') return; fileArr.splice(injectionPoint, 1, `slug: ${slug}`); const finalString = fileArr.join('\n'); debug && console.log(`saving updated markdown file to `, fileWritePath); await Bun.write(fileWritePath, finalString); const newMatter = matter(finalString).data; // we'll need to update the image path in memory, if it exists return newMatter;};interface MatterProcessorProps { frontMatter: Record<string, unknown>; absFilePath: string; mdxPath: string; rawFile: string; imageKey?: string; publicPath?: string; priorityConfig?: Record<string, unknown>; debug?: boolean;}const matterProcessor = async ({ frontMatter, absFilePath, mdxPath, rawFile, imageKey, publicPath, priorityConfig, debug,}: MatterProcessorProps): Promise<Record<string, unknown> | undefined> => { // I've made the DRY Principle sadge. I'm sorry. const fileNameWithExt = mdxPath.split('/').pop(); const fileNameOnlyRaw = fileNameWithExt!.split('.'); const fileNameOnly = fileNameOnlyRaw[0]; const commonConfig = { absFilePath, mdxPath, rawFile, imageKey, publicPath, debug, }; debug && console.log(frontMatter); let priority; if ('type' in frontMatter && priorityConfig && (frontMatter.type as string) in priorityConfig) { debug && console.log('assigning', frontMatter.type, 'with priority', priorityConfig[frontMatter.type as string]); priority = priorityConfig[frontMatter.type as string]; debug && console.log(priority); } if (!('id' in frontMatter) && !('slug' in frontMatter)) { debug && console.log('no uuid or slug found, injecting...'); const newMatter = await comboInject({ absFilePath, rawFile, debug }); if (!newMatter) return; const finalPass = await matterProcessor({ ...commonConfig, frontMatter: newMatter, }); const newFileRead = Bun.file(absFilePath); const newFileStr = await newFileRead.text(); return { ...finalPass, priority, rawStr: newFileStr }; } else if (!('id' in frontMatter)) { debug && console.log('no uuid found, injecting...'); const newMatter = await injectUUID({ absFilePath, rawFile, debug }); if (!newMatter) return; const finalPass = await matterProcessor({ ...commonConfig, frontMatter: newMatter, }); const newFileRead = Bun.file(absFilePath); const newFileStr = await newFileRead.text(); return { ...finalPass, priority, rawStr: newFileStr }; } else if (!('slug' in frontMatter)) { debug && console.log('no slug found, injecting...'); const newMatter = await injectSlug({ absFilePath, rawFile }); if (!newMatter) return; const finalPass = await matterProcessor({ ...commonConfig, frontMatter: newMatter, }); const newFileRead = Bun.file(absFilePath); const newFileStr = await newFileRead.text(); return { ...finalPass, priority, rawStr: newFileStr }; } else if ('slug' in frontMatter && frontMatter.slug !== fileNameOnly) { console.log('filename !== slug in frontmatter. fixing...'); const newMatter = await updateSlug({ absFilePath, rawFile }); if (!newMatter) return; const finalPass = await matterProcessor({ ...commonConfig, frontMatter: newMatter, }); const newFileRead = Bun.file(absFilePath); const newFileStr = await newFileRead.text(); return { ...finalPass, priority, rawStr: newFileStr }; } else if ( imageKey && imageKey in frontMatter && 'id' in frontMatter && 'slug' in frontMatter && frontMatter.slug === fileNameOnly ) { debug && console.log(`uuid found in front matter with ${frontMatter.id as string}, not injecting`); debug && console.log(`slug found in front matter with ${frontMatter.slug as string}, not injecting`); debug && console.log(`found ${frontMatter[imageKey] as string}, processing image...`); const newMatter = await comboImageProcessing({ fmatter: frontMatter, mdxPath, imageKey, publicPath, debug }); return { ...newMatter, priority, localKey: mdxPath, rawStr: rawFile }; } return { ...frontMatter, priority, localKey: mdxPath, rawStr: rawFile };};interface BatchFetchFrontMatterProps extends ConfigProps { pathsArr?: string[]; imageKey?: string; publicPath?: string; // i.e. 'assets/images/blog/heros' priorityConfig?: Record<string, number>;}/*
* @example batchFetchFrontMatter([pathsArr])
* () => [{front matter post0}, ..., {front matter postN}]
*/const batchFetchFrontMatter = async ({ pathsArr, imageKey, publicPath, debug, suppressErr, priorityConfig,}: BatchFetchFrontMatterProps) => { if (!pathsArr) return; const cwd = process.cwd(); try { const metaArr = await Promise.all( pathsArr.map(async (mdxPath: string) => { const absFilePath = path.resolve(path.join(cwd, mdxPath)); const readIntoMem = Bun.file(absFilePath); const rawFile = await readIntoMem.text(); const frontMatter = matter(rawFile).data; const res = await matterProcessor({ frontMatter, absFilePath, mdxPath, rawFile, imageKey, publicPath, priorityConfig, debug, }); return res; }), ); metaArr.sort((a, b) => { return a && 'priority' in a && b && 'priority' in b ? (a.priority as number) - (b.priority as number) : 0; }); return metaArr; } catch (err) { suppressErr && console.error(err); }};export interface BatchFetchMain extends ConfigProps, BatchFetchFrontMatterProps {}// main functionexport const batchFetchMain = async (fetchConfig: BatchFetchMain) => { const validMdxPaths = await batchFetchMDXPaths(fetchConfig); const frontMatterArr = await batchFetchFrontMatter({ ...fetchConfig, pathsArr: validMdxPaths!, }); fetchConfig.debug && console.log(frontMatterArr); return frontMatterArr;};
Alright, there’s a lot going on here. Let's start with the main function, and work our way through it, shall we?
The Main Function: batchFetchMain()
// main functionexport const batchFetchMain = async (fetchConfig: BatchFetchMain) => { const validMdxPaths = await batchFetchMDXPaths(fetchConfig); const frontMatterArr = await batchFetchFrontMatter({ ...fetchConfig, pathsArr: validMdxPaths!, }); fetchConfig.debug && console.log(frontMatterArr); return frontMatterArr;};
Looking at batchFetchMain()
, you’ll see it takes a configuration object of type BatchFetchMain
, which extends types ConfigProps
and BatchFetchFrontMatterProps
. This object defines where the content is and what to exclude. It resembles something like this:
// ConfigProps + BatchFetchFrontMatterProps = BatchFetchMaininterface BatchFetchMain { // must be relative path from root project directory => './content' contentFolder: string; // array of relative paths INSIDE the content folder ['./assets'] foldersToExclude?: string[]; // array of literal file name/ext => ['README.md'] filesToExclude?: string[]; // debug debug?: boolean; suppressErr?: boolean; pathsArr?: string[]; imageKey?: string; publicPath?: string; // i.e. 'assets/images/blog/heros' priorityConfig?: Record<string, number>;}
From there, it generates an array of valid .mdx
paths using batchFetchMDXPaths
, as defined by the configuration object.
Fetching file paths: batchFetchMDXPaths()
batchFetchMDXPaths
imports the following File I/O APIs:
import path from 'node:path';import { readdir, access } from 'node:fs/promises';
And relies on the following function I found loving on stackoverflow ... somewhere:
const isNonEmptyArrayOfStrings = (value: unknown): value is string[] => { return Array.isArray(value) && value.length > 0 && value.every((item) => typeof item === 'string');};
The resultant batchFetchMDXPaths()
function could then be created:
/*
* @example batchFetchMDXPaths({config})
* () => ['./content/blog/post0.mdx', ..., './content/blog/postN.md']
*/export const batchFetchMDXPaths = async ({ contentFolder, foldersToExclude, filesToExclude, debug, suppressErr,}: ConfigProps): Promise<string[] | undefined> => { try { const dir = await readdir(contentFolder, { recursive: true }); const excludedFolders = foldersToExclude?.map((folder) => { const cleanedFolderPath = folder.replace('./', ''); return cleanedFolderPath; }); //const absPath = path.resolve(path.join(process.cwd(), contentFolder)) const fileArr = dir.map((item): string | undefined => { debug && console.log('logging raw path:', item); if (excludedFolders?.some((folder) => item.startsWith(folder))) { debug && console.log('skipping ', item); return; } if (filesToExclude?.some((file) => item.endsWith(file))) { debug && console.log('ommitting ', item); return; } if (item.endsWith('.mdx') || item.endsWith('md')) { return `${contentFolder}/${item}`; } return undefined; }); const filter1 = fileArr.filter((el) => el); // validate found paths const cwd = process.cwd(); const validatedArr = await Promise.all( filter1.map(async (pathStr) => { try { await access(path.resolve(path.join(cwd, pathStr!))); return pathStr; } catch (err) { console.error(err); } }), ); const finalArr = validatedArr.filter((el) => el); debug && console.log(finalArr); if (isNonEmptyArrayOfStrings(finalArr)) return finalArr; } catch (err) { if (err instanceof Error && 'code' in err && err.code === 'ENOENT') { !suppressErr && console.error( "Ooops! Couldn't open that directory! Are you sure that folder is relative to root your project directory, i.e. './src/content/posts'? ", err, ); return; } !suppressErr && console.error(err); }};
Going through it, it recursively reads the contents of the given contentFolder
using readdir
and saves the result into an array of fs.Dirent
objects I lovingly called dir
:
... try { const dir = await readdir(contentFolder, { recursive: true }); ... } catch (err) { ... }...
Then it cleans up the paths of the foldersToExclude
array from the config:
... try { ... const excludedFolders = foldersToExclude?.map((folder) => { const cleanedFolderPath = folder.replace('./', ''); return cleanedFolderPath; }); ... } catch (err) { ... }...
Then it assembles the actual array of paths:
... try { ... const fileArr = dir.map((item): string | undefined => { debug && console.log('logging raw path:', item); if (excludedFolders?.some((folder) => item.startsWith(folder))) { debug && console.log('skipping ', item); return; } if (filesToExclude?.some((file) => item.endsWith(file))) { debug && console.log('ommitting ', item); return; } if (item.endsWith('.mdx') || item.endsWith('md')) { return `${contentFolder}/${item}`; } return undefined; }); ... } catch (err) { ... }...
Once it has those paths from the fileArr
array, it filters any undefined
paths:
... try { ... const filter1 = fileArr.filter((el) => el); ... } catch (err) { ... }...
Then it validates the paths, by mapping through the filter1
array, checking if the path is accessible using access
, and returning the path if it is, and an error if it isn't.
... try { ... // validate found paths const cwd = process.cwd(); const validatedArr = await Promise.all( filter1.map(async (pathStr) => { try { await access(path.resolve(path.join(cwd, pathStr!))); return pathStr; } catch (err) { console.error(err); } }), ); ... } catch (err) { ... }...
Then it does one more filter pass for any undefined strings and finally returns the resultant array (finalArr
) only if the array isn't empty:
... try { ... const finalArr = validatedArr.filter((el) => el); debug && console.log(finalArr); if (isNonEmptyArrayOfStrings(finalArr)) return finalArr; } catch (err) { ... }...
If at any point during this whole process a catastrophic failure occurred, it would catch the error like so:
... try { ... } catch (err) { if (err instanceof Error && 'code' in err && err.code === 'ENOENT') { !suppressErr && console.error( "Ooops! Couldn't open that directory! Are you sure that folder is relative to root your project directory, i.e. './src/content/posts'? ", err, ); return; } !suppressErr && console.error(err); }...
Once the finalArr
is generated from batchFetchMDXPaths
, the posts can then be read into memory, and move on to processing via batchFetchFrontMatter()
.
Post Processing & Content Data Generation
With all the data in memory, it became possible to actually do something with it. That's where the pre-processing step (of the posts) came into play. Just like before, we'll start with the main function (batchFetchFrontMatter()
) and work our way through it.
Batch processing of front matter: batchFetchFrontMatter()
This function is responsible for performing all the processing of the post data, and returns a resultant array of assembled post objects. They get consumed in the push-mdx.ts
script (which we'll see later), that does the actual database insertions.
/*
* @example batchFetchFrontMatter([pathsArr])
* () => [{front matter post0}, ..., {front matter postN}]
*/const batchFetchFrontMatter = async ({ pathsArr, imageKey, publicPath, debug, suppressErr, priorityConfig,}: BatchFetchFrontMatterProps) => { if (!pathsArr) return; const cwd = process.cwd(); try { const metaArr = await Promise.all( pathsArr.map(async (mdxPath: string) => { const absFilePath = path.resolve(path.join(cwd, mdxPath)); const readIntoMem = Bun.file(absFilePath); const rawFile = await readIntoMem.text(); const frontMatter = matter(rawFile).data; const res = await matterProcessor({ frontMatter, absFilePath, mdxPath, rawFile, imageKey, publicPath, priorityConfig, debug, }); return res; }), ); metaArr.sort((a, b) => { return a && 'priority' in a && b && 'priority' in b ? (a.priority as number) - (b.priority as number) : 0; }); return metaArr; } catch (err) { suppressErr && console.error(err); }};
Alright, with this deceptively simple overview, it's time to work through it. So, the first thing to do is to map through the validated pathsArr
, and get the absolute path to the current given path, using path.resolve
with the cwd
joined to the given mdxPath
using path.join
:
const batchFetchFrontMatter = async ({ pathsArr, ...}: BatchFetchFrontMatterProps) => { if (!pathsArr) return; const cwd = process.cwd(); try { const metaArr = await Promise.all( pathsArr.map(async (mdxPath: string) => { const absFilePath = path.resolve(path.join(cwd, mdxPath)); ... }), ); ... } catch (err) { ... }};
Then we can finally take advantage of Bun's unique File I/O APIs (Bun.file
) API, in reading the .mdx
file into memory as a UTF-8
string:
const batchFetchFrontMatter = async ({ pathsArr, ...}: BatchFetchFrontMatterProps) => { if (!pathsArr) return; const cwd = process.cwd(); try { const metaArr = await Promise.all( pathsArr.map(async (mdxPath: string) => { const absFilePath = path.resolve(path.join(cwd, mdxPath)); const readIntoMem = Bun.file(absFilePath); const rawFile = await readIntoMem.text(); ... }), ); ... } catch (err) { ... }};
Then we can grab just the front matter using the matter
function from gray-matter
:
...import matter from 'gray-matter';const batchFetchFrontMatter = async ({ pathsArr, ...}: BatchFetchFrontMatterProps) => { if (!pathsArr) return; const cwd = process.cwd(); try { const metaArr = await Promise.all( pathsArr.map(async (mdxPath: string) => { ... const rawFile = await readIntoMem.text(); const frontMatter = matter(rawFile).data; ... }), ); ... } catch (err) { ... }};
Then it gets to the heart of the function, the matterProcessor
, which is, "Ha, quite a doozy" (we'll break it down next), and returns the result:
/*
* @example batchFetchFrontMatter([pathsArr])
* () => [{front matter post0}, ..., {front matter postN}]
*/const batchFetchFrontMatter = async ({ pathsArr, ...}: BatchFetchFrontMatterProps) => { if (!pathsArr) return; const cwd = process.cwd(); try { const metaArr = await Promise.all( pathsArr.map(async (mdxPath: string) => { ... const res = await matterProcessor({ frontMatter, absFilePath, mdxPath, rawFile, imageKey, publicPath, priorityConfig, debug, }); return res; }), ); ... } catch (err) { ... }};
Zooming in: Processing with matterProcessor()
In brief, the posts get assigned a UUID and a slug as needed. Then, if they have a featured image, they get copied over to the public folder and a blurry srcset
image gets generated and stored as a base64
string into the in-memory data object, along with the image dimensions. Finally, all that data generated during this step, gets returned as an array of objects.
interface MatterProcessorProps { frontMatter: Record<string, unknown>; absFilePath: string; mdxPath: string; rawFile: string; imageKey?: string; publicPath?: string; priorityConfig?: Record<string, unknown>; debug?: boolean;}const matterProcessor = async ({ frontMatter, absFilePath, mdxPath, rawFile, imageKey, publicPath, priorityConfig, debug,}: MatterProcessorProps): Promise<Record<string, unknown> | undefined> => { // I've made the DRY Principle sadge. I'm sorry. const fileNameWithExt = mdxPath.split('/').pop(); const fileNameOnlyRaw = fileNameWithExt!.split('.'); const fileNameOnly = fileNameOnlyRaw[0]; const commonConfig = { absFilePath, mdxPath, rawFile, imageKey, publicPath, debug, }; debug && console.log(frontMatter); let priority; if ('type' in frontMatter && priorityConfig && (frontMatter.type as string) in priorityConfig) { debug && console.log('assigning', frontMatter.type, 'with priority', priorityConfig[frontMatter.type as string]); priority = priorityConfig[frontMatter.type as string]; debug && console.log(priority); } if (!('id' in frontMatter) && !('slug' in frontMatter)) { debug && console.log('no uuid or slug found, injecting...'); const newMatter = await comboInject({ absFilePath, rawFile, debug }); if (!newMatter) return; const finalPass = await matterProcessor({ ...commonConfig, frontMatter: newMatter, }); const newFileRead = Bun.file(absFilePath); const newFileStr = await newFileRead.text(); return { ...finalPass, priority, rawStr: newFileStr }; } else if (!('id' in frontMatter)) { debug && console.log('no uuid found, injecting...'); const newMatter = await injectUUID({ absFilePath, rawFile, debug }); if (!newMatter) return; const finalPass = await matterProcessor({ ...commonConfig, frontMatter: newMatter, }); const newFileRead = Bun.file(absFilePath); const newFileStr = await newFileRead.text(); return { ...finalPass, priority, rawStr: newFileStr }; } else if (!('slug' in frontMatter)) { debug && console.log('no slug found, injecting...'); const newMatter = await injectSlug({ absFilePath, rawFile }); if (!newMatter) return; const finalPass = await matterProcessor({ ...commonConfig, frontMatter: newMatter, }); const newFileRead = Bun.file(absFilePath); const newFileStr = await newFileRead.text(); return { ...finalPass, priority, rawStr: newFileStr }; } else if ('slug' in frontMatter && frontMatter.slug !== fileNameOnly) { console.log('filename !== slug in frontmatter. fixing...'); const newMatter = await updateSlug({ absFilePath, rawFile }); if (!newMatter) return; const finalPass = await matterProcessor({ ...commonConfig, frontMatter: newMatter, }); const newFileRead = Bun.file(absFilePath); const newFileStr = await newFileRead.text(); return { ...finalPass, priority, rawStr: newFileStr }; } else if ( imageKey && imageKey in frontMatter && 'id' in frontMatter && 'slug' in frontMatter && frontMatter.slug === fileNameOnly ) { debug && console.log(`uuid found in front matter with ${frontMatter.id as string}, not injecting`); debug && console.log(`slug found in front matter with ${frontMatter.slug as string}, not injecting`); debug && console.log(`found ${frontMatter[imageKey] as string}, processing image...`); const newMatter = await comboImageProcessing({ fmatter: frontMatter, mdxPath, imageKey, publicPath, debug }); return { ...newMatter, priority, localKey: mdxPath, rawStr: rawFile }; } return { ...frontMatter, priority, localKey: mdxPath, rawStr: rawFile };};
Let's chew through this one as well, shall we? First, we're defining a configuration type for this that looks like this:
interface MatterProcessorProps { frontMatter: Record<string, unknown>; absFilePath: string; mdxPath: string; rawFile: string; imageKey?: string; publicPath?: string; priorityConfig?: Record<string, unknown>; debug?: boolean;}
Then we're consuming in the function props, which creates a local configuration object:
const matterProcessor = async ({ frontMatter, absFilePath, mdxPath, rawFile, imageKey, publicPath, priorityConfig, debug,}: MatterProcessorProps): Promise<Record<string, unknown> | undefined> => { // I've made the DRY Principle sadge. I'm sorry. const fileNameWithExt = mdxPath.split('/').pop(); const fileNameOnlyRaw = fileNameWithExt!.split('.'); const fileNameOnly = fileNameOnlyRaw[0]; const commonConfig = { absFilePath, mdxPath, rawFile, imageKey, publicPath, debug, }; debug && console.log(frontMatter); ...};
Then we're assigning a priority to the current object's type (correlates to the respective schemas/tables we defined earlier), if it exists in the frontMatter
and the configuration
:
const matterProcessor = async ({ frontMatter, priorityConfig, debug, ...}: MatterProcessorProps): Promise<Record<string, unknown> | undefined> => { ... let priority; if ('type' in frontMatter && priorityConfig && (frontMatter.type as string) in priorityConfig) { debug && console.log('assigning', frontMatter.type, 'with priority', priorityConfig[frontMatter.type as string]); priority = priorityConfig[frontMatter.type as string]; debug && console.log(priority); } ...};
Then we go through the rest of the function. Essentially, we're walking through several different cases, and injecting/retrieving/copying data in a recursive fashion.
Performance vs Readability
A switch
statement could've worked here, but I decided against it for some reason. I think it's because I prioritized readability over the marginal performance gain of a switch
.
case_0: If there's no id
or slug
in the frontmatter, it injects them using comboInject()
and as long as the result isn't undefined, it recursively calls the matterProcessor()
function, using the commonConfig
object and the freshly created front matter, aptly labled newMatter
. Once that's done, it uses Bun.file
to read the updated .mdx
file, and assigns it to the returned rawStr
key.
... if (!('id' in frontMatter) && !('slug' in frontMatter)) { debug && console.log('no uuid or slug found, injecting...'); const newMatter = await comboInject({ absFilePath, rawFile, debug }); if (!newMatter) return; const finalPass = await matterProcessor({ ...commonConfig, frontMatter: newMatter, }); const newFileRead = Bun.file(absFilePath); const newFileStr = await newFileRead.text(); return { ...finalPass, priority, rawStr: newFileStr }; }...
Assigning UUIDs & Slugs
No ID or Slug => comboInject()
comboInject
is the function that handles this case, it looks like this:
const comboInject = async ({ rawFile, absFilePath, debug }: InjectionProps) => { const uuid = crypto.randomUUID(); const fileArr = rawFile.split('\n'); const fileWritePath = absFilePath; //console.log(fileWritePath); const fileName = fileWritePath.split('/').pop(); //console.log(fileName); if (!fileName) return; const slug = fileName.split('.')[0]; // we need to search the file string to find out where // we can safely inject the uuid. const injectionPointId = getInjectionPoint({ fileArr, strOfInterest: '---', precisionPoint: 1, debug }); if (typeof injectionPointId !== 'number') return; fileArr.splice(injectionPointId, 0, `id: ${uuid}`); // i think we can just feed the current filarArr, can't we? // assuming we have the id, we'll inject it right after const injectionPointSlug = getInjectionPoint({ fileArr, strOfInterest: 'id', precisionPoint: 1, debug }); if (typeof injectionPointSlug !== 'number') return; fileArr.splice(injectionPointSlug, 0, `slug: ${slug}`); debug && console.log(`saving updated markdown file to `, fileWritePath); const finalString = fileArr.join('\n'); await Bun.write(fileWritePath, finalString); const newMatter = matter(finalString).data; return newMatter;};
You'll notice it generates the uuid
(v4) with Bun's crypto.randomUUID()
, then it generates the slug
by splitting and popping the absolute file path (absFilePath
). This essentially means the file name, is the ultimate source of truth for the slug, and if the filename changes, the slug changes with it.
Then it uses getInjectionPoint()
to find out where to inject the uuid
and slug
. That function looks like this:
interface InjectionPointProps { fileArr: string[]; strOfInterest: string; precisionPoint: number; debug?: boolean;}const getInjectionPoint = ({ fileArr, strOfInterest, precisionPoint, debug }: InjectionPointProps) => { const getPoint = fileArr.map((strLine, index): number | undefined => { // we're going to look for the first "---" of the front matter // then inject. We can test that we're not adding at the end by // checking if the key following injection is valid const keyGuess = fileArr[index + precisionPoint]?.split(':')[0]; //console.log(keyGuess) //console.log(strLine.split(':')[0]) const point = index + precisionPoint; if (strLine === strOfInterest && keyGuess) { debug && console.log('inject at ', index + precisionPoint, 'before ', keyGuess); return point; } else if (strLine.split(':')[0] === strOfInterest) { debug && console.log('found', strOfInterest, 'at', index, 'Injecting at', point, 'before', keyGuess); return point; } return undefined; }); const injectionPoint = getPoint.filter((el) => el)[0]; return injectionPoint;};
Once it's injected into the raw file string
array (fileArr
), it can be condensed back into a string, saved into the .mdx
file using Bun.file
, and the fresh front matter data newMatter
can be returned.
The other two cases, case_1: no slug in frontMatter
and case_2: no id
in frontMatter
, repeat the respective comboInject
processes, but for their respective needs.
No ID? =>injectUUID()
Both injectUUID()
and injectSlug()
, rely on the below interface InjectionProps
.
interface InjectionProps { rawFile: string; absFilePath: string; debug?: boolean;}
Then, like it's name, injectUUID()
, takes the inputs from with the given props above, finds the place in the MDX string to inject it, and updates the file with the injected UUID.
const injectUUID = async ({ rawFile, absFilePath, debug }: InjectionProps) => { const uuid = crypto.randomUUID(); const fileArr = rawFile.split('\n'); // we need to search the file string to find out where // we can safely inject the uuid. const injectionPoint = getInjectionPoint({ fileArr, strOfInterest: '---', precisionPoint: 1, debug }); if (typeof injectionPoint !== 'number') return; fileArr.splice(injectionPoint, 0, `id: ${uuid}`); const finalString = fileArr.join('\n'); const fileWritePath = absFilePath; debug && console.log(`saving updated markdown file to `, fileWritePath); await Bun.write(fileWritePath, finalString); const newMatter = matter(finalString).data; // we'll need to update the image path in memory, if it exists return newMatter;};
No Slug? => injectSlug()
As for handling just the slug, this does something similar, except it doesn't generate a UUID to inject, it simply takes the file pathname, and creates a slug from that.
const injectSlug = async ({ rawFile, absFilePath, debug }: InjectionProps) => { const fileArr = rawFile.split('\n'); const fileWritePath = absFilePath; console.log(fileWritePath); const fileName = fileWritePath.split('/').pop(); console.log(fileName); if (!fileName) return; const slug = fileName.split('.')[0]; // assuming we have the id, we'll inject it right after const injectionPoint = getInjectionPoint({ fileArr, strOfInterest: 'id', precisionPoint: 1, debug }); if (typeof injectionPoint !== 'number') return; fileArr.splice(injectionPoint, 0, `slug: ${slug}`); const finalString = fileArr.join('\n'); debug && console.log(`saving updated markdown file to `, fileWritePath); await Bun.write(fileWritePath, finalString); const newMatter = matter(finalString).data; // we'll need to update the image path in memory, if it exists return newMatter;};
Slug !== filename? => updateSlug()
and in case_03: slug
in frontMatter
!==
to fileNameOnly
the updateSlug
function is used. It's extremely similar to the above function.
const updateSlug = async ({ rawFile, absFilePath, debug }: InjectionProps) => { const fileArr = rawFile.split('\n'); const fileWritePath = absFilePath; //console.log(fileWritePath); const fileName = fileWritePath.split('/').pop(); //console.log(fileName); if (!fileName) return; const slug = fileName.split('.')[0]; // assuming we have the id, we'll inject it right after const injectionPoint = getInjectionPoint({ fileArr, strOfInterest: 'slug', precisionPoint: 0, debug }); if (typeof injectionPoint !== 'number') return; fileArr.splice(injectionPoint, 1, `slug: ${slug}`); const finalString = fileArr.join('\n'); debug && console.log(`saving updated markdown file to `, fileWritePath); await Bun.write(fileWritePath, finalString); const newMatter = matter(finalString).data; // we'll need to update the image path in memory, if it exists return newMatter;};
In our final case, case_04: image (imageKey
) declared in frontMatter
, id
and slug
declared in frontMatter
, and the slug
matches fileNameOnly
.
else if ( imageKey && imageKey in frontMatter && 'id' in frontMatter && 'slug' in frontMatter && frontMatter.slug === fileNameOnly ) { debug && console.log(`uuid found in front matter with ${frontMatter.id as string}, not injecting`); debug && console.log(`slug found in front matter with ${frontMatter.slug as string}, not injecting`); debug && console.log(`found ${frontMatter[imageKey] as string}, processing image...`); const newMatter = await comboImageProcessing({ fmatter: frontMatter, mdxPath, imageKey, publicPath, debug }); return { ...newMatter, priority, localKey: mdxPath, rawStr: rawFile }; }
This relies on a function called comboImageProcessing()
, which brings us to our next section.
Generating Image Data
This step is somewhat intensive. In this step I'm generating the blurry srcset
image using plaiceholder
and grabbing the resultant image dimensions, as well as copying over the featured image into the public folder.
The latter strategy ensures that featured images can be served directly from Next.js
itself. As well. it also keeps things consistent by replicating the functionality of a rehype plugin I currently use (rehype-mdx-import-media
by Remco Haszing), which does the same thing, but for images contained in the content body of the mdx
file, rather than the front matter.
Aside, we'll begin our look at this process by understanding the main function here, comboImageProcessing()
.
comboImageProcessing()
Similar to before, we have a interface for a generic configuration object.
interface ImageUtilProps { fmatter: Record<string, unknown>; mdxPath: string; publicPath?: string; imageKey: string; debug?: boolean;}
Then we have the actual function comboImageProcessing()
, that leverage inner functions to both generate the srcset
and dimension data, and performs the copying step to the public folder.
const comboImageProcessing = async ({ fmatter, mdxPath, imageKey, publicPath, debug }: ImageUtilProps) => { if (imageKey && imageKey in fmatter) { // need to do this first (the other function seems to mutate something) const imgBlurPlusMetaRes = await imgMetaPlusBlurryPlaiceHolders({ fmatter, mdxPath, imageKey, debug }); const imgBlurData = imgBlurPlusMetaRes?.base64; const imgHeight = imgBlurPlusMetaRes?.height; const imgWidth = imgBlurPlusMetaRes?.width; const newImgPath = await newimageEmbedPath({ fmatter, mdxPath, imageKey, publicPath, debug }); fmatter[imageKey] = newImgPath; return { ...fmatter, blur: imgBlurData, height: imgHeight, width: imgWidth }; }};
We can see how the blurry srcset
and the image dimensions are obtained below.
imgMetaPlusBlurryPlaiceHolders()
This function finds the absolute image path from the relative path given in the front matter, and then reads it into memory as an arrayBuffer
, leveraging Bun's File I/O API. Then it transforms it from an arrayBuffer
to simply a Buffer
, which can be used as an input for getPlaiceHolder()
. The latter is a function from plaiceholder
, and it relies on sharp
under the hood. It's also the actual function that generates the blurry srcset
and provides the image dimensions.
import { getPlaiceholder } from 'plaiceholder';const imgMetaPlusBlurryPlaiceHolders = async ({ fmatter, mdxPath, imageKey, debug }: ImageUtilProps) => { if (imageKey && imageKey in fmatter) { debug && console.log(`using ${fmatter[imageKey] as string} to generate img data + blurs`); const currentImagePath = fmatter[imageKey]; //console.log(currentImagePath) const splitStr = mdxPath.split('/'); const parentPath = splitStr.slice(0, splitStr.length - 1).join('/'); const imgToCopyFilePath = path.resolve(parentPath, currentImagePath as string); const imgFile = Bun.file(imgToCopyFilePath); const arrayBuf = await imgFile.arrayBuffer(); const buf = Buffer.from(arrayBuf); const { base64, metadata: { height, width }, } = await getPlaiceholder(buf); return { base64, height, width }; }};
newImageEmbedPath()
With that out of the way, the final step is to copy the image from the content
folder, to the public folder, which Next.js can use to serve the image. The below function both performs that step, as well as generates the new relative path (to the public folder), which will be saved into the in-memory post object.
const newimageEmbedPath = async ({ fmatter, mdxPath, publicPath, imageKey, debug,}: ImageUtilProps): Promise<string | undefined> => { if (imageKey && typeof imageKey === 'string' && imageKey in fmatter) { debug && console.log('found hero image with key', imageKey); //const imageType = 'type' in fmatter && (fmatter.type as string); const currentImagePath = fmatter[imageKey]; if (typeof currentImagePath !== 'string') return; //debug && console.log(currentImagePath) const splitStr = mdxPath.split('/'); // need to get parent path before mutating array with pop. const parentPath = splitStr.slice(0, splitStr.length - 1).join('/'); //debug && console.log(parentPath) // now we can get the mdx file name to use as the folder later. const mdxFile = splitStr.pop(); if (!mdxFile) return; //const mdxFileSlug = mdxFile.split('.')[0]; //debug && console.log(mdxFileSlug) const imgToCopyFilePath = path.resolve(parentPath, currentImagePath); //debug && console.log(imgToCopyFilePath) const publicCopyPath = `/public/${publicPath}/${currentImagePath.split('/').pop()}`; //debug && console.log(publicCopyPath) const embedPublicCopyPath = `/${publicPath}/${currentImagePath.split('/').pop()}`; //debug && console.log(embedPublicCopyPath) const pathToCheck = path.join(process.cwd(), publicCopyPath); //debug && console.log(pathToCheck) const constPublicImgFile = Bun.file(pathToCheck); const imgFile = Bun.file(imgToCopyFilePath); /*
* If the file isn't in the public folder, then copy it.
* If an image already exists in the public folder,
* but the declared frontmatter image is
* different (diff in size), then replace it.
*/ const checkImg = await constPublicImgFile.exists(); if (!checkImg) { debug && console.log('image not in public folder, copying ...'); await Bun.write(`${process.cwd()}${publicCopyPath}`, imgFile); } else if (constPublicImgFile.size !== imgFile.size) { debug && console.log('found image is different from public folder, copying ...'); await Bun.write(`${process.cwd()}${publicCopyPath}`, imgFile); } else { debug && console.log('image is the same, not copying'); } return embedPublicCopyPath; }};
Zooming out
Once it has all of that, it returns the assembled processed object:
const matterProcessor = async ({ frontMatter, absFilePath, mdxPath, rawFile, imageKey, publicPath, priorityConfig, debug,}: MatterProcessorProps): Promise<Record<string, unknown> | undefined> => { ... return { ...frontMatter, priority, localKey: mdxPath, rawStr: rawFile };};
From there, we can zoom further back out to the parent function to notice we return the assembled processed object as the res
, to generate the metaArr
array, which is then sorted and returned according to the priority we defined earlier:
/*
* @example batchFetchFrontMatter([pathsArr])
* () => [{front matter post0}, ..., {front matter postN}]
*/const batchFetchFrontMatter = async ({ pathsArr, imageKey, publicPath, debug, suppressErr, priorityConfig,}: BatchFetchFrontMatterProps) => { if (!pathsArr) return; const cwd = process.cwd(); try { const metaArr = await Promise.all( pathsArr.map(async (mdxPath: string) => { const absFilePath = path.resolve(path.join(cwd, mdxPath)); const readIntoMem = Bun.file(absFilePath); const rawFile = await readIntoMem.text(); const frontMatter = matter(rawFile).data; const res = await matterProcessor({ frontMatter, absFilePath, mdxPath, rawFile, imageKey, publicPath, priorityConfig, debug, }); return res; }), ); metaArr.sort((a, b) => { return a && 'priority' in a && b && 'priority' in b ? (a.priority as number) - (b.priority as number) : 0; }); return metaArr; } catch (err) { suppressErr && console.error(err); }};
With all that out of the way, we can finally zoom even further back to our main function:
export const batchFetchMain = async (fetchConfig: BatchFetchMain) => { const validMdxPaths = await batchFetchMDXPaths(fetchConfig); const frontMatterArr = await batchFetchFrontMatter({ ...fetchConfig, pathsArr: validMdxPaths!, }); fetchConfig.debug && console.log(frontMatterArr); return frontMatterArr;};
To notice we then return the frontMatterArr
generated from the batchFetchFrontMatter()
. With that, our walk through of the first part of the CMS (Scanning and Processing) is complete!
Inserting Content Data into the DB
Okay, so I've talked a lot about generating data, but where does it all go? Well, the remote database on Turso, of course! You can check out the below scripts to witness it in action! The first is a collection of insertion functions (bun-db-funcs.ts
), the second is a helper function that imports the previous functions dynamically from the configuration object (push-mdx.ts
), the final script integrates all of this into db-gen.ts
, which is called by the runner.ts
script which is called during prebuild
(runs before next build
).
bun-db-funcs.ts
The below isn't that complicated (thankfully). You'll notice that I'm primarily integrating all the schemas/tables defined all the way at the beginning of this article, and leveraging drizzle's statement builder to insert the data we generated into the database.
// bun-db-funcs.ts/* eslint-disable no-console -- we're not in the browser, so this is fine. */import { eq, and } from 'drizzle-orm';//import { maindb } from '@/lib/db/bun-db';import { maindb } from '@/lib/db/turso-db';import { type Authors, authors } from '@/lib/db/schema/authors';import { type Tags, tags } from '@/lib/db/schema/tags';import { type Posts, posts, postsToTags } from '@/lib/db/schema/posts';import { type FeaturedImages, featuredImages } from '@/lib/db/schema/featured-images';export const insertAuthors = async (data: Authors): Promise<void> => { if (!data.id) { console.error('no author id! did you forget something?'); return; } try { const authorData = data; console.log(authorData); // perform check should update const inserted = await maindb.query.authors.findFirst({ where: eq(authors.id, authorData.id), columns: { id: true, slug: true, date: true, name: true, mastodon: true, mastodonURL: true, localKey: true, rawStr: true, }, }); const assembledData = { id: authorData.id, slug: authorData.slug, date: authorData.date, name: authorData.name, mastodon: authorData.mastodon, mastodonURL: authorData.mastodonURL, localKey: authorData.localKey, rawStr: authorData.rawStr, }; if (JSON.stringify(assembledData) !== JSON.stringify(inserted)) { await maindb .insert(authors) .values(assembledData) .onConflictDoUpdate({ target: authors.id, set: { slug: authorData.slug, date: authorData.date, name: authorData.name, mastodon: authorData.mastodon, mastodonURL: authorData.mastodonURL, localKey: authorData.localKey, rawStr: authorData.rawStr, }, }); console.log('inserted', authorData.name, 'into db'); } else { console.log('author', authorData.name, 'already exists'); } } catch (err) { console.error("Couldn't insert author:", err); }};export const insertTags = async (data: Tags): Promise<void> => { if (!data.id) { console.error('no tag id! did you forget something?'); return; } try { const tagData = data; const inserted = await maindb.query.tags.findFirst({ where: eq(tags.id, tagData.id), columns: { id: true, slug: true, date: true, title: true, localKey: true, rawStr: true, }, }); const assembledData = { id: tagData.id, slug: tagData.slug, date: tagData.date, title: tagData.title, localKey: tagData.localKey, rawStr: tagData.rawStr, }; if (JSON.stringify(assembledData) !== JSON.stringify(inserted)) { await maindb .insert(tags) .values(assembledData) .onConflictDoUpdate({ target: tags.id, set: { slug: tagData.slug, date: tagData.date, title: tagData.title, localKey: tagData.localKey, rawStr: tagData.rawStr, }, }); console.log('inserted', tagData.title, 'into db'); } else { console.log('tag', tagData.title, 'already exists'); } } catch (err) { console.error("Couldn't insert tags", err); }};export const insertFeaturedImages = async (data: FeaturedImages): Promise<void> => { if (!data.id) { console.error('no image id! did you forget something?'); return; } try { const imgData = data; const inserted = await maindb.query.featuredImages.findFirst({ where: eq(featuredImages.id, imgData.id), columns: { id: true, slug: true, date: true, fileLocation: true, caption: true, credit: true, creditUrlText: true, creditUrl: true, altText: true, localKey: true, blur: true, height: true, width: true, rawStr: true, }, }); const assembledData = { id: imgData.id, slug: imgData.slug, date: imgData.date, fileLocation: imgData.fileLocation, caption: imgData.caption, credit: imgData.credit ? imgData.credit : null, creditUrlText: imgData.creditUrlText ? imgData.credit : null, creditUrl: imgData.creditUrl ? imgData.creditUrl : null, altText: imgData.altText, localKey: imgData.localKey, blur: imgData.blur, height: imgData.height, width: imgData.width, rawStr: imgData.rawStr, }; if (JSON.stringify(assembledData) !== JSON.stringify(inserted)) { await maindb .insert(featuredImages) .values(assembledData) .onConflictDoUpdate({ target: featuredImages.id, set: { slug: imgData.slug, date: imgData.date, fileLocation: imgData.fileLocation, caption: imgData.caption, credit: imgData.credit, creditUrlText: imgData.creditUrlText, creditUrl: imgData.creditUrl, altText: imgData.altText, localKey: imgData.localKey, blur: imgData.blur, height: imgData.height, width: imgData.width, rawStr: imgData.rawStr, }, }); console.log('inserted', imgData.slug, 'into db'); } else { console.log('img', imgData.slug, 'already exists'); } } catch (err) { console.error("Couldn't insert images:", err); }};export const insertPosts = async (data: Posts): Promise<void> => { if (!data.id) { console.error('no post id! Did you forget something?'); return; } try { const postData = data; // sleep a second console.log('let data load'); const sleep = (ms: number) => new Promise((r) => { setTimeout(r, ms); }); await sleep(500); console.log("okay! let's continue"); /*
if (!(featuredImageIdRes && 'id' in featuredImageIdRes)) {
console.error('Could not retrieve image id from slug! Did you forget something?');
return;
}
if (!(authorIdRes && 'id' in authorIdRes)) {
console.error('Could not retrieve author id from slug! Did you forget something?');
return;
}
*/ const getAuthorID = async (slugStr: string) => { const authorIdRes = await maindb.query.authors.findFirst({ where: eq(authors.slug, slugStr), columns: { id: true, }, }); return authorIdRes; }; const getImgId = async (slugStr: string) => { const featuredImageIdRes = await maindb.query.featuredImages.findFirst({ where: eq(featuredImages.slug, slugStr), columns: { id: true, }, }); return featuredImageIdRes; }; const inserted = await maindb.query.posts.findFirst({ where: eq(posts.id, postData.id), columns: { id: true, authorId: true, slug: true, date: true, headline: true, subheadline: true, featuredImageId: true, altCaption: true, localKey: true, rawStr: true, }, }); const authorIdfuncRes = await getAuthorID(postData.author); const imgIdfuncRes = await getImgId(postData.featuredImage); const assembledData = { id: postData.id, authorId: authorIdfuncRes!.id, slug: postData.slug, date: postData.date, headline: postData.headline, subheadline: postData.subheadline, featuredImageId: imgIdfuncRes!.id, altCaption: postData.altCaption ? postData.altCaption : null, localKey: postData.localKey, rawStr: postData.rawStr, }; if (JSON.stringify(assembledData) !== JSON.stringify(inserted)) { await maindb .insert(posts) .values(assembledData) .onConflictDoUpdate({ target: posts.id, set: { authorId: authorIdfuncRes?.id, slug: postData.slug, date: postData.date, headline: postData.headline, subheadline: postData.subheadline, featuredImageId: imgIdfuncRes?.id, altCaption: postData.altCaption, localKey: postData.localKey, rawStr: postData.rawStr, }, }); console.log('inserted', postData.slug, 'into db'); } else { console.log('post', postData.slug, 'already exists'); } await Promise.all( postData.tags.map(async (tagSlug) => { const res = await maindb.query.tags.findFirst({ where: eq(tags.slug, tagSlug), columns: { id: true, }, }); if (!(res && 'id' in res)) return; const insertedPostToTags = await maindb.query.postsToTags.findFirst({ where: and(eq(postsToTags.tagId, res.id), eq(postsToTags.postId, postData.id)), columns: { tagId: true, postId: true, }, }); const assembledDataPostToTags = { tagId: res.id, postId: postData.id, }; if (JSON.stringify(assembledDataPostToTags) !== JSON.stringify(insertedPostToTags)) { await maindb .insert(postsToTags) .values(assembledDataPostToTags) .onConflictDoUpdate({ target: [postsToTags.postId, postsToTags.tagId], set: { postId: postData.id, tagId: res.id }, }); console.log('associated', tagSlug, 'with', postData.slug, 'in db'); } else { console.log( tagSlug, 'with id:', res.id, 'is already associated with \npost:', postData.slug, 'with id', postData.id, ); } }), ); console.log('all done!'); } catch (err) { console.error("Couldn't insert posts", err); }};
One thing you'll probably notice, is that I'm assembling a temporary object within each insertion function (respective of the given table, e.g., authors
), from what already exists in the database. By running this comparison, I'm ensuring that only new content is inserted into the database, or content that needs to be updated. As such, this drastically reduces the number of rows that need to be written.
Turso limits
Turso only gives 25 million row additions per month for free, so I decided it was important to keep as much of that 25 million as possible. You know, just in case.
Another thing you might notice is that I've commented out the maindb
that's imported from @/lib/db/bun-db
. That database, is the local one that relied on Bun's native SQLite driver. But, for the reasons I went over earlier, I wound up using Turso instead.
Finally, I wanted to point out the sleep()
functions. Those were put in place, because I was having issues performing the does exist
tests, as part of my attempt to reduce the numbers of row additions. My best guess, is that latency between the database, and my little program, was introducing false negatives.
For example, when I asked that database if there was content for the other tables that posts
needed, it would say no, despite having just inserted that data. This would stop any posts from being inserted into posts
. The sleep()
, was a band-aid solution that gave the database enough time to reflect the newly inserted data, and successfully allowed for the rest of the script to execute, so posts could make their way to the posts
table.
With that, you can then see how these functions might be integrated in the below push-mdx.ts
script.
push-mdx.ts
The below is more or less a helper function, that integrates closely with a configuration object (which defines the functions to be imported, such as from the script above). This was essentially my attempt at creating a generic function, which others could use if they created their own functions to be imported and used.
// push-mdx.ts#! /usr/bin/env bun/* eslint-disable no-console -- bun is bun */import { type BatchFetchMain, batchFetchMain } from './fetch-mdx';interface DbFunctionsProps { dbFunctionModules: { insert: Record<string, unknown>; };}export const batchPushMain = async (fetchConfig: BatchFetchMain & DbFunctionsProps): Promise<void> => { // get processed front matter array const matterRes = await batchFetchMain(fetchConfig); if (!matterRes) { fetchConfig.debug && console.log('Ooops, no data found!'); return; } // arr is sorted by priority so this should work: await Promise.all( matterRes.map(async (processedMDX): Promise<void> => { if (processedMDX && 'type' in processedMDX && (processedMDX.type as string)) { const funcType = processedMDX.type as string; if (funcType in fetchConfig.dbFunctionModules.insert) { const insModRaw = fetchConfig.dbFunctionModules.insert[funcType] as Record<string, string>; const insModKeys = Object.keys(insModRaw); const insModStr = insModKeys[0]!; const insModPath = insModRaw[insModStr]!; if (insModStr && insModPath) { /* eslint-disable-next-line @typescript-eslint/no-unsafe-assignment -- importing types would be a lot to ask for */ const dbFuncs = await import(insModPath); /* eslint-disable-next-line @typescript-eslint/no-unsafe-call, @typescript-eslint/no-unsafe-member-access -- importing types would be a lot to ask for */ await dbFuncs[insModStr](processedMDX); } } } }), );};
What I'm most proud of here, is that I figured out how to dynamically import modules from the given string from the configuration object. It's admittedly not pretty, as I import the functions based on their given declared type
, but the defined functions were successfully imported by leveraging Object.keys()
, and React's dynamic import syntax. However, you'll probably notice the eslint directives to disable typechecking on those functions. That's simply because I didn't know of a easy way to type them.
While the latter problem could've been solved by simply creating/importing those function types, this script was written at a point where I thought I could release this thing to the public as ready to use software. Thus, demanding people provide types with their functions seemed like a big ask, in my opinion. Though, I suppose expecting users to create their own database functions in the first place was probably a much greater ask. By that point, why even use something like this? But, I digress.
As well, you'll notice I'm importing the main fetch function (batchFetchMain()
), which again both fetches the posts to read, and performs various processing steps. If you'll recall, many of those steps are admittedly quite rigid, or inflexible, which would create further problems if I ever did wind up generalizing this code based content management system.
Inherent problems aside, you can see how my generic script was integrated with the configuration object in the next section.
db-gen.ts
This is where the two scripts above are integrated into one main function that does everything. batchPushMain()
is called with the configuration object, shamelessly called laniConfig
.
// db-gen.tsimport { batchPushMain } from './mdx-db/push-mdx';const laniConfig = { contentFolder: './content', foldersToExclude: ['./assets'], filesToExclude: ['README.md', 'LICENSE'], imageKey: 'fileLocation', publicPath: 'assets/images/featured', priorityConfig: { authors: 1, tags: 2, featuredImages: 3, posts: 4, }, dbFunctionModules: { insert: { authors: { insertAuthors: '@/lib/bun-db-funcs' }, tags: { insertTags: '@/lib/bun-db-funcs' }, featuredImages: { insertFeaturedImages: '@/lib/bun-db-funcs' }, posts: { insertPosts: '@/lib/bun-db-funcs' }, }, }, debug: false,};const dbGen = async (): Promise<void> => { try { console.log('trying to create db'); await batchPushMain(laniConfig); console.log('db-gen successful'); } catch (err) { console.error(err); }};export default dbGen;
The point of this script, was to create a simple function that could be integrated into the runner.ts
prebuild script—which I'll cover a bit later—along with setting up a integrated configuration file for my CMS.
Fetching Data from the DB
What good would a CMS be if you couldn't access any of the data you stored on to it? Pretty awful I'm betting. So, that's why it was important to write the script below to get that data.
node-db-funcs.ts
One thing to point out, is there's a switch over from bun
to node
functions, and that's because the production build of a Next.js application runs on node
. While it is possible to run the Next.js development server from bun
, the production run time environment is strictly node, for good reason: Next.js often relies on the latest Node.js APIs that Bun simply hasn't had time to implement, yet.
// node-db-funcs.ts/* eslint-disable-next-line import/named -- monorepo issues */import { cache } from 'react';import 'server-only';import { eq, desc, like, or, and } from 'drizzle-orm';import { maindb } from '@/lib/db/turso-db';import { posts, postsToTags } from '@/lib/db/schema/posts';import { tags } from '@/lib/db/schema/tags';//import { maindb } from '@/lib/db/drizzle';export interface PostsToTagsItem { tag: { slug: string; title: string; id: string; };}export interface QueryPostMetaItem { id: string; date: Date; slug: string; headline: string; subheadline: string; author: { name: string; }; featuredImage?: { fileLocation: string; altText: string; blur: string; height: number; width: number; }; tags: { slug: string; title: string; id: string; }[]; localKey: string;}export interface QueryPost extends QueryPostMetaItem { rawStr: string;}export const queryPostMetas = cache(async () => { const postRes = await maindb.query.posts.findMany({ orderBy: [desc(posts.date)], columns: { authorId: false, featuredImageId: false, rawStr: false, }, with: { author: { columns: { name: true, }, }, postToTags: { columns: { tagId: false, postId: false, }, with: { tag: { columns: { slug: true, title: true, id: true, }, }, }, }, featuredImage: { columns: { fileLocation: true, altText: true, blur: true, height: true, width: true, }, }, }, }); const finalRes = postRes.map((post) => { const tagsOne = post.postToTags.map((tagsObj) => { const slug = tagsObj.tag.slug; const title = tagsObj.tag.title; const id = tagsObj.tag.id; return { slug, title, id }; }); delete (post as unknown as { postToTags: Record<string, unknown> | undefined }).postToTags; return { ...post, tags: tagsOne }; }); //console.dir(finalRes, { depth: null }); return finalRes;});export const queryPostByIdForJustRawStr = cache(async (idStr: string) => { const resOne = await maindb.query.posts.findFirst({ where: eq(posts.id, idStr), columns: { rawStr: true, }, }); return resOne;});export const queryPostByIdandSlugOrJustIdForJustRawStr = cache( async ({ idStr, slugStr }: { idStr: string; slugStr: string }) => { const postRes = await maindb.query.posts.findFirst({ where: or(and(like(posts.id, `${idStr}%`), eq(posts.slug, slugStr)), like(posts.id, `${idStr}%`)), columns: { rawStr: true, }, }); return postRes; },);export interface PostQ extends QueryPostMetaItem { featuredImage: { fileLocation: string; altText: string; credit?: string; creditUrl?: string; creditUrlText?: string; caption?: string; height: number; width: number; blur: string; }; altCaption?: string; rawStr: string;}export const queryPostMetaByIdandSlugOrJustId = cache( async ({ idStr, slugStr }: { idStr: string; slugStr: string }) => { const postRes = await maindb.query.posts.findFirst({ where: or( and(like(posts.id, `${idStr}%`), eq(posts.slug, slugStr)), or(like(posts.id, `${idStr}%`), eq(posts.id, idStr)), ), columns: { authorId: false, featuredImageId: false, }, with: { author: { columns: { name: true, }, }, postToTags: { columns: { tagId: false, postId: false, }, with: { tag: { columns: { slug: true, title: true, id: true, }, }, }, }, featuredImage: { columns: { fileLocation: true, altText: true, credit: true, creditUrl: true, creditUrlText: true, caption: true, blur: true, height: true, width: true, }, }, }, }); if (!postRes) return; const tagsMap = postRes.postToTags.map((tagsObj) => { const slug = tagsObj.tag.slug; const title = tagsObj.tag.title; const id = tagsObj.tag.id; return { slug, title, id }; }); delete (postRes as unknown as { postToTags: Record<string, unknown> | undefined }).postToTags; return { ...postRes, tags: tagsMap }; },);/*
where: or(
or(
and(like(posts.id, `${idStr}%`), eq(posts.slug, slugStr)),
or(like(posts.id, `${idStr}%`), eq(posts.id, idStr)),
),
and(eq(posts.id, idStr), eq(posts.slug, slugStr)),
),
*/export interface TagQ { id: string; slug: string; date: string; title: string; localKey: string; rawStr: string;}export const getAllTags = cache(async () => { const res = await maindb.select().from(tags); return res;});export const getTag = cache(async ({ idStr, slugStr }: { idStr: string; slugStr: string }) => { const idRes2 = await maindb.query.tags.findFirst({ where: or(and(like(tags.id, `${idStr}%`), eq(tags.slug, slugStr)), like(tags.id, `${idStr}%`)), }); return idRes2;});// type of metaItem arrexport const getPostsWithTagID = cache(async (tagIdStr: string) => { const idRes = await maindb.query.tags.findFirst({ where: like(tags.id, `${tagIdStr}%`), columns: { id: true, }, }); if (!idRes?.id) return; const queryRes = await maindb.query.postsToTags.findMany({ where: eq(postsToTags.tagId, idRes.id), columns: { postId: false, tagId: false, }, with: { post: { columns: { id: true, slug: true, }, }, }, }); const postRes = await Promise.all( queryRes.map(async (post) => { const innerRes = await queryPostMetaByIdandSlugOrJustId({ idStr: post.post.id, slugStr: post.post.slug }); return innerRes; }), ); return postRes;});
In this script, I'm primarily just using the Drizzle query builder to create functions to select
data from the database, to be returned as assembled chunks (with types), for use around the website. The latter can be seen in the next section.
As well, I'm also making use of the cache
function, that Next.js integrates from React. In theory, this meant that each call to the database was memoized, so I'd reduce the number of row reads to the database. In practice, all these posts were statically generated, so there was ultimately no point to doing things like this, other than for science, I suppose—which is quite important!
Putting it Together
The last step was to ensure the dbGen()
function ran before next build
, which was accomplished simply by creating a script runner, and calling it in our package.json
.
runner.ts
// runner.ts/* eslint-disable no-console -- bun is bun */import 'dotenv/config';import dbGen from './db-gen';import atomGen from './atom-gen';const runScripts = async (): Promise<void> => { try { console.log('trying to create database'); await dbGen(); console.log('dbGen success'); await atomGen(); console.log('atomGen success'); } catch (err) { console.error(err); }};try { await runScripts();} catch (err) { console.error(err);}
In the above, you'll notice I'm calling the dbGen()
function from earlier, as well as a function I didn't cover called atomGen()
. The latter is a script which generates the Atom Web Feed, and it relies on a library called jstoxml
. I'll likely cover how that all works in a later blog post.
Aside, in the below you can see how the runner
script is called with package.json
. One thing to notice is that I had to directly declare my NODE_ENV
as production
, otherwise I'd run into issues with Drizzle being unable to work properly. I'm unsure if it was a bug in bun
or if this just how things are supposed to work.
// package.json{ ..., "name": "laniakita-web", "scripts": { ..., "prebuild": "NODE_ENV=production bun ./src/scripts/runner.ts", },}
With everything now in place, every time I ran bun run build
, content would be scanned, processed, and fresh content would be inserted into the database, while old content would remain the same. I was then able to retrieve it using the functions I wrote in the previous section.
Rendering Content
So, now that we've seen how content get's transformed into data, stored, then retrieved from a remote database on Turso, the final piece of the puzzle was to load it into the frontend. The below is the old source code for these posts, which demonstrates exactly that.
import type { Metadata, ResolvingMetadata } from 'next';import { useMemo } from 'react';import { getMDXComponent } from 'mdx-bundler/client';import { redirect } from 'next/navigation';import { PostHeader } from '@/app/blog/post-header';import { type PostQ, type QueryPostMetaItem, queryPostByIdandSlugOrJustIdForJustRawStr, queryPostMetaByIdandSlugOrJustId, queryPostMetas,} from '@/lib/node-db-funcs';import { resMdxV3 } from '@/utils/mdxbundler-main';import BlogImageBlurServer from '@/app/blog/blog-image-blur-wrapper';import descriptionHelper from '@/utils/description-helper';export async function generateStaticParams() { const postMetas = (await queryPostMetas()) as unknown as QueryPostMetaItem[]; return postMetas.map((meta) => ({ id: meta.id.split('-').shift(), slug: meta.slug, }));}export async function generateMetadata( { params }: { params: { id: string; slug: string } }, parent: ResolvingMetadata,): Promise<Metadata> { const metaRes = (await queryPostMetaByIdandSlugOrJustId({ idStr: params.id, slugStr: params.slug, })) as unknown as QueryPostMetaItem; const rawRes = await queryPostByIdandSlugOrJustIdForJustRawStr({ idStr: params.id, slugStr: params.slug }); const findDescr = rawRes?.rawStr ? descriptionHelper(rawRes.rawStr) : ["Lani's Blog"]; const descr = findDescr ? findDescr.filter((el) => el) : ''; const previousImages = (await parent).openGraph?.images ?? []; const featuredImg = metaRes.featuredImage?.fileLocation; return { title: metaRes.headline, authors: [{ name: metaRes.author.name }], description: descr[0], openGraph: { title: metaRes.headline, description: descr[0], images: [featuredImg ? featuredImg : '', ...previousImages], }, twitter: { card: 'summary', title: metaRes.headline, description: descr[0], images: [featuredImg ? featuredImg : '', ...previousImages], }, };}export default async function BlogPostPage({ params }: { params: { id: string; slug: string } }) { const postQ = (await queryPostMetaByIdandSlugOrJustId({ idStr: params.id, slugStr: params.slug, })) as unknown as PostQ; if (postQ.slug !== params.slug) { redirect(`/blog/posts/${params.id}/${postQ.slug}`); } const cwdFolderStrPre = postQ.localKey.split('/'); const cwdFolderStr = cwdFolderStrPre.slice(0, cwdFolderStrPre.length - 1).join('/'); const rawMDX = postQ.rawStr; if (!rawMDX) return; if (!cwdFolderStr) return; const resMdx = await resMdxV3(rawMDX, cwdFolderStr, params.id, 'blog'); return ( <main className='motion-safe:simple-color-trans -mb-0.5 min-h-full max-w-full bg-ctp-base dark:bg-ctp-midnight'> {(resMdx as unknown) !== undefined && ( <article id='content' className='flex size-full flex-col items-center justify-center'> <PostHeader dataObject={postQ} /> <div className='flex min-h-full items-center justify-center px-10 py-6'> <div className='prose-protocol-omega'> <MdxJsx code={resMdx.code} /> </div> </div> </article> )} </main> );}export function MdxJsx({ code }: { code: string }) { const Component = useMemo(() => getMDXComponent(code), [code]); return <Component components={{ img: BlogImageBlurServer }} />;}
The above is sorta complicated on first look, but the important thing to notice is that I'm taking the retrieved raw mdx
string, and feeding it into my mdx-bundler
function. That function simultaneously configures mdx-bundler
with all the plugins I use for these posts.
Et voila! A CMS I built all by myself, with data flowing from a database, directly into this Next.js application, to generate a blog on the internet.
Discussion / Moving to Contentlayer2
Alright, so after pouring all this time and energy into creating the above system, what went so wrong, that I felt the need to switch to timlrx/contentlayer2
? Well, nothing major per se, it was just that by the time I'd written everything out, it felt overly complex, and a little half baked. I suppose once all the pieces were in place, and the high of finishing something I'd worked months on wore off, I quickly began to realize all it's flaws.
For example, if you look over the bun-db-funcs.ts
, you'll notice I put little sleep()
functions in between insertion steps. That was put in place, because bun
is either too fast, or again, there's too much latency for the operations to complete properly, or I've introduced a bug somehow with sloppy code (which honestly is more likely). In hindsight I could've modified those functions to be transactions
, but by that point the novelty of the thing I'd just created had well worn off, and the slog of future maintenance, was beginning to creep in.
Likewise, I'd originally planned on creating a full blown CRUD application, which would've tied a admin dashboard directly into the Next.js
application. That way I could edit and delete posts, simply through an admin panel, but this never fully materialized, beyond a little prototype I'd built in Svelte, before moving on to creating this site in Next.js. Why? I suppose I decided to prioritize getting content to a blog first, before creating any fancy GUIs that would've tied in an authentication framework, like Lucia, into the frontend application.
As such, once I'd come across contentlayer2
, I was smitten. It was doing everything I was trying to do, but in a clean little package. There were no databases to configure. There was no worry about little pieces here and there throwing a wrench into the whole system. On the surface, it seemed like it just worked.
So, I dove in. I swallowed my pride, and I scrapped months of effort building my own CMS for something I can honestly say is better. However, because I did, maintenance on this site is now significantly less burdensome, and I'm far less worried about dependency updates breaking it.
Though, I will say that the time and energy I spent creating my own solution wasn't all for naught. In fact, I still use the image processing functions I'd created earlier, inside of my contentlayer
configuration. You can see how I've done this with the below code blocks. The first is my contentlayer.config.ts
and the second is my recycled image processing functions (image-process.ts
).
// contentlayer.config.tsimport { defineDocumentType, makeSource } from 'contentlayer2/source-files';import remarkGfm from 'remark-gfm';import rehypeSlug from 'rehype-slug';import rehypeShiki from '@shikijs/rehype';import { rendererRich, transformerTwoslash } from '@shikijs/twoslash';import rehypeMdxImportMedia from 'rehype-mdx-import-media';import { imageProcessor, FeaturedImageR1 } from './src/lib/image-process';import jsxToHtml from './src/lib/mdx-html';const CONTENT_DIR = 'content';export const Project = defineDocumentType(() => ({ name: 'Project', filePathPattern: 'projects/**/*.yaml', contentType: 'data', fields: { id: { type: 'string', required: true }, date: { type: 'date', required: true }, updated: { type: 'date', required: false }, title: { type: 'string', required: true }, tech: { type: 'list', of: { type: 'string' }, }, imageSrc: { type: 'string', required: false }, altText: { type: 'string', required: false }, caption: { type: 'string', required: false }, description: { type: 'string', required: true }, blogPost: { type: 'string', required: false }, link: { type: 'string', required: false }, }, computedFields: { url: { type: 'string', resolve: (project) => `/${project._raw.flattenedPath}`, }, featured_image: { type: 'json', resolve: async (project): Promise<FeaturedImageR1> => { if (!project.imageSrc) return new FeaturedImageR1(false, '', '', 0, 0, '', '', '', null); const data = await imageProcessor({ contentDir: CONTENT_DIR, prefix: `${CONTENT_DIR}/${project._raw.flattenedPath}`, imgPath: project.imageSrc, debug: false, }); const res = new FeaturedImageR1( true, data.src, data.base64, data.height, data.width, data.resized, project.altText ?? '', project.caption ?? '', data._debug ?? null, ); return res; }, }, },}));export const Author = defineDocumentType(() => ({ name: 'Author', filePathPattern: 'authors/**/*.mdx', contentType: 'mdx', fields: { name: { type: 'string', required: true }, mastodon: { type: 'string', required: false }, github: { type: 'string', required: false }, }, computedFields: { url: { type: 'string', resolve: (author) => `/${author._raw.flattenedPath}`, }, },}));export const Page = defineDocumentType(() => ({ name: 'Page', filePathPattern: 'pages/**/*.mdx', contentType: 'mdx', fields: { title: { type: 'string', required: true }, description: { type: 'string', required: false }, date: { type: 'date', required: false }, }, computedFields: { url: { type: 'string', resolve: (page) => `/${page._raw.flattenedPath.split('/').slice(1, page._raw.flattenedPath.split('/').length).join('/')}`, }, },}));const Tag = defineDocumentType(() => ({ name: 'Tag', filePathPattern: 'tags/**/*.mdx', contentType: 'mdx', fields: { id: { type: 'string', required: false }, title: { type: 'string', required: true }, slug: { type: 'string', required: false }, date: { type: 'date', required: false }, }, computedFields: { url: { type: 'string', resolve: (tag) => `/${tag._raw.flattenedPath}`, }, },}));const Category = defineDocumentType(() => ({ name: 'Category', filePathPattern: 'categories/**/*.mdx', contentType: 'mdx', fields: { id: { type: 'string', required: false }, title: { type: 'string', required: true }, slug: { type: 'string', required: false }, date: { type: 'date', required: false }, }, computedFields: { url: { type: 'string', resolve: (category) => `/${category._raw.flattenedPath}`, }, },}));export const Post = defineDocumentType(() => ({ name: 'Post', filePathPattern: `posts/**/*.mdx`, contentType: 'mdx', fields: { id: { type: 'string', required: true }, headline: { type: 'string', required: true }, subheadline: { type: 'string', required: false }, slug: { type: 'string', required: false }, date: { type: 'date', required: true }, updated: { type: 'date', required: false }, author: { type: 'string', required: false }, categories: { type: 'list', of: Category, }, tags: { type: 'list', of: Tag, }, keywords: { type: 'list', of: { type: 'string' }, }, imageSrc: { type: 'string', required: false }, altText: { type: 'string', required: false }, caption: { type: 'string', required: false }, }, computedFields: { html: { type: 'string', resolve: (post) => { const renderedMdx = jsxToHtml(post.body.code); return renderedMdx; }, }, url: { type: 'string', resolve: (post) => `/blog/${post.id.split('-').shift()}/${post._raw.flattenedPath.split('/').pop()}`, }, featured_image: { type: 'json', resolve: async (post): Promise<FeaturedImageR1> => { if (!post.imageSrc) return new FeaturedImageR1(false, '', '', 0, 0, '', '', '', null); const data = await imageProcessor({ contentDir: CONTENT_DIR, prefix: `${CONTENT_DIR}/${post._raw.flattenedPath}`, imgPath: post.imageSrc, debug: false, }); const res = new FeaturedImageR1( true, data.src, data.base64, data.height, data.width, data.resized, post.altText ?? '', post.caption ?? '', data._debug ?? null, ); return res; }, }, },}));export default makeSource({ contentDirPath: CONTENT_DIR, documentTypes: [Post, Category, Tag, Page, Project, Author], mdx: { remarkPlugins: [remarkGfm], rehypePlugins: [ [ rehypeShiki, { themes: { light: 'catppuccin-latte', dark: 'catppuccin-mocha', }, transformers: [ transformerTwoslash({ explicitTrigger: true, renderer: rendererRich(), }), ], }, ], rehypeMdxImportMedia, rehypeSlug, ], resolveCwd: 'relative', esbuildOptions(options) { options.outdir = `${process.cwd()}/public/assets/images/blog`; options.loader = { ...options.loader, '.png': 'file', '.jpg': 'file', }; options.publicPath = `/assets/images/blog`; options.write = true; return options; }, },});
// image-process.tsimport { existsSync, copyFileSync, mkdirSync } from 'node:fs';import { readFile, lstat } from 'node:fs/promises';import path from 'node:path';import { getPlaiceholder } from 'plaiceholder';import sharp from 'sharp';export interface DebugR1 { destination: string; status: { exists: boolean; existsInPublic: boolean; }; didCopy: string; reason: string;}export class FeaturedImageR1 { hasImage: boolean; src: string; base64: string; height: number; width: number; resized: string; altText: string; caption: string; _debug: DebugR1 | null; constructor( hasImage: boolean, src: string, base64: string, height: number, width: number, resized: string, altText: string, caption: string, _debug: DebugR1 | null, ) { this.hasImage = hasImage; this.src = src; this.base64 = base64; this.height = height; this.width = width; this.resized = resized; this.altText = altText; this.caption = caption; this._debug = _debug; }}/** * A typeguarded version of `instanceof Error` for NodeJS. * author: Joseph JDBar Barron * {@link https://dev.to/jdbar} */export function instanceOfNodeError<T extends new (...args: unknown[]) => Error>( value: Error, errorType: T,): value is InstanceType<T> & NodeJS.ErrnoException { return value instanceof errorType;}// check in relative assets folder & public folderconst checkImgExists = (imgPath: string) => { let exists = false; // read image // 1. check if path exists if (existsSync(imgPath)) { exists = true; } return { exists };};const checkDuplicate = async (imgPathOne: string, imgPathTwo: string) => { let isDupe = 0; // WARNING: assumes both images exist const imgOne = await lstat(imgPathOne); const imgTwo = await lstat(imgPathTwo); if (imgOne.size === imgTwo.size) { isDupe = 1; } return isDupe;};interface Debug { destination: string; status: { exists: boolean; existsInPublic: boolean; }; didCopy: string; reason: string;}interface ImageMoverRes { url: string; local: string; _meta: null | Debug;}const imageMover = async ({ contentDir, prefix, imgPath, debug,}: { contentDir: string; prefix: string; imgPath: string; debug?: boolean;}): Promise<ImageMoverRes> => { if (debug) { console.debug('image:', imgPath); console.debug('url:', prefix); } /*
* we essentially need to work backwards from
* where the post is located (postParent), and the
* location of the relative asset (imgPath).
*/ const postParentRaw = prefix.split('/'); postParentRaw.shift(); // removes CONTENT_DIR postParentRaw.pop(); // removes post filename const postParent = postParentRaw.join('/'); const urlPath = path.join(postParent, imgPath); // location of the image in the public folder. const rawPath = path.resolve(path.join(contentDir, postParent, imgPath)); const publicPath = path.resolve(path.join('./public', postParent, imgPath)); if (debug) { console.debug('rawPath:', rawPath); console.debug('publicPath:', publicPath); } const statusOne = checkImgExists(rawPath); const statusTwo = checkImgExists(publicPath); const status = { exists: statusOne.exists, existsInPublic: statusTwo.exists, }; let copied = 0; let isDupe = 0; // using sync functions, it's faster for our purposes. const copier = (from: string, to: string) => { try { // important to make the directory, it won't copy otherwise (ENOENT). mkdirSync(path.dirname(to), { recursive: true }); copyFileSync(from, to); copied = 1; console.debug('copied successfully to:', to); } catch (err) { console.error(err); } }; // if valid & in public folder, check if new image is the same if (status.exists && status.existsInPublic) { isDupe = await checkDuplicate(rawPath, publicPath); if (isDupe === 0) { copier(rawPath, publicPath); } } // if valid, but not in public folder, copy it if (status.exists && !status.existsInPublic) { copier(rawPath, publicPath); } const result = { url: urlPath, local: rawPath, _meta: debug ? { destination: publicPath, status, didCopy: copied === 1 ? 'copy' : 'no copy', reason: isDupe === 0 ? 'original' : 'duplicate', } : null, }; return result;};interface BlurRes { base64: string; height: number; width: number;}const imageBlurBase64 = async (imgPath: string): Promise<BlurRes> => { const imgFile = await readFile(imgPath); const { base64, metadata: { height, width }, } = await getPlaiceholder(imgFile); return { base64, height, width };};const imageResize = async (imgPath: string) => { const imgFile = await readFile(imgPath); const { data } = await sharp(imgFile) .resize(1600, 900, { kernel: 'lanczos3' }) .toFormat('jpeg', { mozjpeg: true }) .toBuffer({ resolveWithObject: true }); const baseSixtyFour = `data:image/jpeg;base64,${data.toString('base64')}`; return baseSixtyFour;};export interface FeaturedImageRes extends BlurRes { src: string; resized: string; _debug: null | Debug;}export const imageProcessor = async ({ contentDir, prefix, imgPath, debug,}: { contentDir: string; prefix: string; imgPath: string; debug?: boolean;}): Promise<FeaturedImageRes> => { try { const imgCopyRes = await imageMover({ contentDir, prefix, imgPath, debug }); const blurRes = await imageBlurBase64(imgCopyRes.local); const resize64 = await imageResize(imgCopyRes.local); return { src: `/${imgCopyRes.url}`, ...blurRes, resized: resize64, _debug: debug ? imgCopyRes._meta : null }; } catch (err) { console.error(err); } return { src: '', base64: '', height: 0, width: 0, resized: '', _debug: null };};
Granted, they're a little modified—there's an additional image down scaler too—but the base of it is there. Likewise, if I hadn't sunk all this energy into my own solution in the first place, I'd never have been able to truly appreciate all the work that goes into CMSes and projects like contentlayer
, nor would I be able to know their limitations so closely either.
Which, speaking of, contentlayer
isn't perfect, it's far from it. Because it relies on json
to store content, it creates significantly inflated application bundles. It's sort of a common complaint75. Now, is it a solution that works for something small like a blog, yes, and damn well too. But, for something more data intensive, like a news aggregator? Forget it. You'd be much better served creating either the monstrosity I did earlier, or using an off the shelf CMS, because at least those can scale.
With that said, contentlayer
for a site like mine, just seems like the right tool for the job. At this scale, it's as close to perfect as I'm going to get, and I'm incredibly appreciative of all the work behind it too.
Footnotes
-
Timothy. timlrx/contentlayer2 [Internet]. 2024 [cited 2024 Sep 13]. Available from: https://github.com/timlrx/contentlayer2 ↩
-
Contentlayer Makes Working with Content Easy for Developers [Internet]. 2022 [cited 2024 Sep 13]. Available from: https://www.youtube.com/watch?v=58Pj4a4Us7A ↩
-
Blog Tool, Publishing Platform, and CMS [Internet]. WordPress.org. 2024 [cited 2024 Oct 6]. Available from: https://wordpress.org/ ↩
-
Ghost: The best open source blog & newsletter platform [Internet]. Ghost - The Professional Publishing Platform. [cited 2024 Oct 6]. Available from: https://ghost.org/ ↩
-
What is JAMstack? [Internet]. [cited 2024 Oct 6]. Available from: https://www.cloudflare.com/learning/performance/what-is-jamstack/ ↩
-
Headless CMS: Everything you need to know [Internet]. [cited 2024 Oct 6]. Available from: https://hygraph.com/learn/headless-cms ↩
-
Strapi - Open source Node.js Headless CMS 🚀 [Internet]. [cited 2024 Oct 6]. Available from: https://strapi.io/ ↩
-
Content that takes you everywhere [Internet]. [cited 2024 Oct 6]. Available from: https://www.contentful.com/ ↩
-
The Best React-Based Framework [Internet]. Gatsby. [cited 2024 Oct 6]. Available from: https://www.gatsbyjs.com/ ↩
-
Payload: The fastest growing open-source headless CMS [Internet]. Payload. [cited 2024 Oct 6]. Available from: https://payloadcms.com ↩
-
The Open Source Headless CMS (and More) [Internet]. [cited 2024 Oct 6]. Available from: https://directus.io/ ↩
-
Supabase | The Open Source Firebase Alternative [Internet]. Supabase. [cited 2024 Oct 6]. Available from: https://supabase.com/ ↩
-
PocketBase - Open Source backend in 1 file [Internet]. [cited 2024 Oct 6]. Available from: https://pocketbase.io/ ↩
-
Futurama - Build my own themepark, with blackjack, and hookers [Internet]. 2020 [cited 2024 Oct 6]. Available from: https://www.youtube.com/watch?v=ubPWaDWcOLU ↩ ↩2
-
Astro [Internet]. Astro. [cited 2024 Oct 6]. Available from: https://astro.build/ ↩
-
Content Collections [Internet]. Docs. [cited 2024 Oct 6]. Available from: https://docs.astro.build/en/guides/content-collections/ ↩
-
Daring Fireball: Markdown [Internet]. [cited 2024 Oct 6]. Available from: https://daringfireball.net/projects/markdown/ ↩
-
The Official YAML Web Site [Internet]. [cited 2024 Oct 6]. Available from: https://yaml.org/ ↩
-
Writing Markup with JSX – React [Internet]. [cited 2024 Oct 6]. Available from: https://react.dev/learn/writing-markup-with-jsx ↩
-
Wormer JO and T. Markdown for the component era [Internet]. MDX. 2017 [cited 2024 Oct 6]. Available from: https://mdxjs.com/ ↩
-
Rendering: Server Components | Next.js [Internet]. [cited 2024 Oct 6]. Available from: https://nextjs.org/docs/app/building-your-application/rendering/server-components ↩
-
Configuring: MDX | Next.js [Internet]. [cited 2024 Oct 6]. Available from: https://nextjs.org/docs/app/building-your-application/configuring/mdx ↩
-
next.js/examples/blog-starter at canary · vercel/next.js [Internet]. GitHub. [cited 2024 Oct 6]. Available from: https://github.com/vercel/next.js/tree/canary/examples/blog-starter ↩
-
examples/solutions/blog at main · vercel/examples [Internet]. GitHub. [cited 2024 Oct 6]. Available from: https://github.com/vercel/examples/tree/main/solutions/blog ↩
-
Vercel: Build and deploy the best web experiences with the Frontend Cloud [Internet]. Vercel. [cited 2024 Oct 6]. Available from: https://vercel.com/home ↩
-
HTMLImageElement: src property - Web APIs | MDN [Internet]. 2023 [cited 2024 Oct 6]. Available from: https://developer.mozilla.org/en-US/docs/Web/API/HTMLImageElement/src ↩
-
HTMLImageElement: srcset property - Web APIs | MDN [Internet]. 2024 [cited 2024 Oct 6]. Available from: https://developer.mozilla.org/en-US/docs/Web/API/HTMLImageElement/srcset ↩
-
Components: <Image> | Next.js [Internet]. 2024 [cited 2024 Sep 13]. Available from: https://nextjs.org/docs/app/api-reference/components/image#loaderfile ↩
-
What is a content delivery network (CDN)? | How do CDNs work? [Internet]. [cited 2024 Oct 6]. Available from: https://www.cloudflare.com/learning/cdn/what-is-a-cdn/ ↩
-
Content Delivery Network - Amazon CloudFront - AWS [Internet]. Amazon Web Services, Inc. [cited 2024 Oct 6]. Available from: https://aws.amazon.com/cloudfront/ ↩
-
What is CRUD? [Internet]. Codecademy. [cited 2024 Oct 6]. Available from: https://www.codecademy.com/article/what-is-crud ↩
-
Turso — SQLite for Production [Internet]. Turso. 2024 [cited 2024 Sep 13]. Available from: https://turso.tech ↩
-
About SQLite [Internet]. [cited 2024 Oct 6]. Available from: https://www.sqlite.org/about.html ↩
-
tursodatabase/libsql [Internet]. Turso Database; 2024 [cited 2024 Oct 6]. Available from: https://github.com/tursodatabase/libsql ↩
-
What Is Database as a Service (DBaaS)? | IBM [Internet]. 2021 [cited 2024 Oct 6]. Available from: https://www.ibm.com/topics/dbaas ↩
-
SQLite – API | Bun Docs [Internet]. Bun. [cited 2024 Oct 6]. Available from: https://bun.sh/docs/api/sqlite ↩
-
Rumzan I. Is SQLite supported in Vercel? [Internet]. [cited 2024 Oct 6]. Available from: https://vercel.com/guides/is-sqlite-supported-in-vercel ↩ ↩2
-
Read-only sqlite · vercel · Discussion #1181 [Internet]. GitHub. [cited 2024 Oct 6]. Available from: https://github.com/orgs/vercel/discussions/1181 ↩ ↩2
-
Vercel Functions Limitations [Internet]. [cited 2024 Oct 6]. Available from: https://vercel.com/docs/functions/limitations ↩ ↩2
-
Functions: generateStaticParams | Next.js [Internet]. [cited 2024 Oct 6]. Available from: https://nextjs.org/docs/app/api-reference/functions/generate-static-params ↩
-
Drizzle ORM - next gen TypeScript ORM. [Internet]. 2024 [cited 2024 Sep 13]. Available from: https://orm.drizzle.team/ ↩ ↩2
-
Drizzle ORM - SQLite [Internet]. [cited 2024 Oct 6]. Available from: https://orm.drizzle.team/docs/get-started-sqlite ↩
-
Overview | Cloudflare D1 docs [Internet]. Cloudflare Docs. [cited 2024 Oct 6]. Available from: https://developers.cloudflare.com/d1/ ↩
-
Turso Database Pricing [Internet]. [cited 2024 Oct 6]. Available from: https://turso.tech/pricing ↩
-
Prisma | Simplify working and interacting with databases [Internet]. Prisma. [cited 2024 Oct 6]. Available from: https://www.prisma.io ↩
-
Drizzle ORM - Magic sql operator [Internet]. [cited 2024 Oct 6]. Available from: https://orm.drizzle.team/docs/sql ↩
-
Kale V, Sayin E. Impressive insults: How do consumers respond to self‐deprecating advertisements? Psychology & Marketing. 2024 Jul 20;41:2695–2710. ↩
-
Liu C, Gao J. What makes a self-deprecating advertisement more persuasive? The role of self-uncertainty. Asia Pacific Journal of Marketing and Logistics. 2023 Jul 11;36. ↩
-
Drizzle ORM - Config Reference [Internet]. [cited 2024 Oct 6]. Available from: https://orm.drizzle.team/kit-docs/config-reference ↩
-
Drizzle + Turso [Internet]. Turso. [cited 2024 Oct 6]. Available from: https://docs.turso.tech/sdk/ts/orm/drizzle ↩
-
Glob Tool | DigitalOcean [Internet]. [cited 2024 Oct 6]. Available from: https://www.digitalocean.com/community/tools/glob ↩
-
Node.js — How to read environment variables from Node.js [Internet]. [cited 2024 Oct 6]. Available from: https://nodejs.org/en/learn/command-line/how-to-read-environment-variables-from-nodejs ↩
-
What is SST [Internet]. SST. 2024 [cited 2024 Oct 6]. Available from: https://sst.dev/docs/ ↩
-
Secret [Internet]. SST. [cited 2024 Oct 6]. Available from: https://sst.dev/docs/component/secret/ ↩
-
Linking [Internet]. SST. 2024 [cited 2024 Oct 6]. Available from: https://sst.dev/docs/linking/ ↩
-
Property accessors - JavaScript | MDN [Internet]. 2024 [cited 2024 Oct 6]. Available from: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_accessors ↩
-
Configuring: Environment Variables | Next.js [Internet]. [cited 2024 Oct 6]. Available from: https://nextjs.org/docs/app/building-your-application/configuring/environment-variables ↩
-
Drizzle ORM - Schema [Internet]. [cited 2024 Oct 7]. Available from: https://orm.drizzle.team/docs/sql-schema-declaration ↩
-
Three Table Types Relationship (1:1, 1:n, m:n) [Internet]. [cited 2024 Oct 7]. Available from: https://www.relationaldbdesign.com/database-design/module6/three-relationship-types.php ↩ ↩2
-
Datatypes In SQLite [Internet]. [cited 2024 Oct 7]. Available from: https://www.sqlite.org/datatype3.html ↩
-
Drizzle ORM - SQLite column types [Internet]. [cited 2024 Oct 7]. Available from: https://orm.drizzle.team/docs/column-types/sqlite ↩
-
Davis KR, Peabody B, Leach P. Universally Unique IDentifiers (UUIDs) [Internet]. Internet Engineering Task Force; 2024 May. Report No.: RFC 9562. Available from: https://datatracker.ietf.org/doc/rfc9562 ↩
-
Crypto: randomUUID() method - Web APIs | MDN [Internet]. 2024 [cited 2024 Oct 7]. Available from: https://developer.mozilla.org/en-US/docs/Web/API/Crypto/randomUUID ↩
-
Drizzle ORM - Goodies [Internet]. [cited 2024 Oct 7]. Available from: https://orm.drizzle.team/docs/goodies ↩ ↩2
-
Drizzle ORM - Query [Internet]. [cited 2024 Oct 7]. Available from: https://orm.drizzle.team/docs/rqb#declaring-relations ↩
-
Drizzle ORM - Turso [Internet]. [cited 2024 Oct 7]. Available from: https://orm.drizzle.team/docs/connect-turso ↩
-
Drizzle ORM -
push
[Internet]. [cited 2024 Oct 7]. Available from: https://orm.drizzle.team/docs/drizzle-kit-push ↩ -
CLI [Internet]. SST. [cited 2024 Oct 7]. Available from: https://sst.dev/docs/reference/cli/ ↩
-
File I/O – API | Bun Docs [Internet]. Bun. 2024 [cited 2024 Sep 13]. Available from: https://bun.sh/docs/api/file-io ↩
-
Schlinkert J. jonschlinkert/gray-matter [Internet]. 2024 [cited 2024 Sep 13]. Available from: https://github.com/jonschlinkert/gray-matter ↩
-
Plaiceholder [Internet]. 2023 [cited 2024 Sep 13]. Available from: https://plaiceholder.co/docs ↩
-
Base64 - MDN Web Docs Glossary: Definitions of Web-related terms | MDN [Internet]. 2024 [cited 2024 Oct 7]. Available from: https://developer.mozilla.org/en-US/docs/Glossary/Base64 ↩
-
Building Your Application: Caching | Next.js [Internet]. [cited 2024 Oct 7]. Available from: https://nextjs.org/docs/app/building-your-application/caching ↩
-
Dodds KC. mdx-bundler: Compile and bundle your MDX files and their dependencies. FAST. [Internet]. 2021 [cited 2024 Sep 13]. Available from: https://github.com/kentcdodds/mdx-bundler ↩
-
Sdorra S. Contentlayer, MDX and the vercel edge function size limit | sdorra.dev [Internet]. A site about software development by Sebastian Sdorra. 2022 [cited 2024 Sep 29]. Available from: https://sdorra.dev/posts/2022-11-24-contentlayer-mdx-edge ↩